

DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Curriculum Structure

III Semester Scheme of Studies- Diploma in Mechanical Engineering

	/ /			Но	ırs per w	reek	è		CI Mar		SEE Marks			ing			
Sl. No.	Course Category / Teaching Department	Course Code	Course Name	L	Т	P	Total contact hrs /week	Credits	Max	Min	Max	Min	Total Marks	Min Marks for Passing (including CIE marks)	Assigned Grade	Grade Point	SGPA and CGPA
				I	ntegra	ted Co	urses										
1	PC/ME	20ME31P	Mechanics of Materials	3	1	4	8	6	60	24	40	16	100	40			
2	PC/ME	20ME32P	Machine Tool Technology	3	1	4	8	6	60	24	40	16	100	40			CGPA
3	PC/ME	20ME33P	Manufacturing Processes	3	1	4	8	6	60	24	40	16	100	40			જ
4	PC/ME	20ME34P	Fluid Power Engineering	3	1	4	8	6	60	24	40	16	100	40			Both SGPA
	Audit Course																
5	AU/KA	20KA31T	ಸಾಹಿತ್ಯ ಸಿಂಚನ-॥/ ಬಳಕೆ ಕನ್ನಡ-॥	2	0	0	2	2	50	20	-	-	50	20			
	Total 14 4 16 34 26 290 116 160 64 450 180																

^{*}PC: Programme Core:: AU-Audit Course:: KA: Kannada:: L: Lecture:: T: Tutorial:: P: Practice

3rd SEMESTER

Government of Karnataka DEPARTMENT OF TECHNICAL EDUCATION

Programme	Mechanical Engineering	Semester	III
Course Code	20ME31P	Type of Course	Programme Core
Course Name	Mechanics of Materials	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale

In this course, Diploma engineers are required to analyse the reasons for failure of components and select the suitable materials for a given applications. For this purpose, it is essential to study the concepts, principles, applications and practices covering stress, strain, stress concentration, weak points, deformations, bending moment and shearing force. The students will also study the basic principles of Finite Elements Analysis and perform stress strain analysis using Ansys software to understand and quantify the effects of real-world conditions on a part. These simulations, will allow Diploma engineers to locate potential problems in a design, including areas of tension and weak spots. FEA becomes a tremendous productivity tool, helping engineers in reducing product development time and cost. Hence, FEA is introduced in this course. It is expected that efforts will be made to provide appropriate learning experiences in the use of basic principles to the solution of applied problems and to develop the required skill and competencies

2. Course Outcomes: At the end of the Course, the student will be able to:

CO-01	Analyse Simple Stresses and Strains on given Structural member that is subjected to Tensile, Compressive and Shear loads by using Destructive Test.
CO-02	Draw Shear force Diagram (SFD) and Bending moment Diagram (BMD) and Also, Analyse Bending Stresses in a Beam using Finite element methods(FEM) software
CO-03	Demonstrate the application of finite element formulations to solve both One dimensional and Two dimensional Problems.
CO-04	Demonstrate the application of FEM software for Validation of both One dimensional and Two dimensional Problems

3. Course Content

			Lecture (Knowledge)	Tutorial (Activity)	Practice (Skill)		
Week	СО	PO*	3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)		
			1. Introduction to Force- Types of Forces-Resolution of forces		Resolution of forces by Graphical Method		
1	01	01	2. Problems on Resolution of forces- Analytical Method3. Problems on Resolution of forces- Analytical Method	Refer Table 1	Verification of Forces by Lami's Theorem		
2	01	01	1. Types of Loads-Tensile, Compression, Shear, Impact, Stress- Types- Strain- Types- - Hooks Law- Young's Modulus		Conduct Tensile test for the given Specimen and Determine Stress- Strain- Young's Modulus, Yield Stress- Maximum Stress-		

			2. Stress - Strain Diagram - Elastic constants- Linear strain, Lateral Strain, Poison's Ratio, Volumetric Strain, Bulk Modulus, Rigidity Modulus, Fatigue - Endurance Limit 3. Stress concentration, Factor of Safety(FOS), Concept of Temperature stresses	Refer Table 1	Breaking Stress- % Elongation in Length and % Reduction in Area Also, Draw Stress- Strain Diagram for the above Parameters
3	01	01	Simple Problems on Stress, Strain and Elastic constants Simple Problems on Stress, Strain and Elastic constants Simple Problems on Stress, Strain and Elastic constants	Refer Table 1	Conduct Compression test for the given Specimen and Determine Stress- Strain-Young's Modulus, Yield Stress- Maximum Stress- % Reduction in Length and % Increase in Area Also, Draw Stress- Strain Diagram for the above Parameters
4	01	01	1. Problems on Members subjected to combined Stresses 2. Problems on Members subjected to combined Stresses 3. Problems on Members subjected to combined Stresses	Refer Table 1	Conduct Shear test for the given specimen
5	02	02	1. Types of Beams-Types of Loads acting on Beams-Concept of Shear force - Bending moment 2 Draw Shear force Diagram (SFD) and Bending Moment Diagram (BMD) for Cantilever subjected to Point Load and Uniformly Distributed loads (UDL) 3. Draw Shear force Diagram (SFD) and Bending Moment Diagram (BMD) for Cantilever subjected to Point Load and Uniformly Distributed loads (UDL)	Refer Table 1	Conduct Bending test for the given specimen

		ı	4.5. 01. 0:		<u> </u>
			1. Draw Shear force Diagram (SFD) and Bending Moment Diagram (BMD) for a Simply supported beam subjected to Point Load and Uniformly Distributed loads (UDL)		
6	02	02	2.Draw SFD and BMD for Simply supported and Cantilever beam subjected to Point Load and UDL Draw Shear force Diagram (SFD) and Bending Moment Diagram (BMD) for a Simply supported beam subjected to Point Load and Uniformly Distributed loads (UDL)	Refer Table 1	Present You tube videos in Stress, Strain and Bending Stresses on Different mechanical members Prepare a report on the observations made Eg:
			3 Draw SFD and BMD for Simply supported and Cantilever beam subjected to Point Load and UDL Draw Shear force Diagram (SFD) and Bending Moment Diagram (BMD) for a Simply supported beam subjected to Point Load and Uniformly Distributed loads (UDL)		https://www.youtube.com/ watch?v=C-FEVzI8oe8
7	02	02	 Pure Bending-Assumptions- Neutral Axis-Bending Equation Problems on Bending Equation Problems on Bending Equation Equation 	Refer Table 1	Present You tube videos in Stress, Strain and Bending Stresses on Different mechanical members Prepare a report on the observations made
			1.Introduction to Finite Element Methods (FEM), Need-Back Ground 2. Methods employed in		
8	03,04	01	FEM- Steps in FEM 3. Advantages and Disadvantages, Limitations, Applications of FEM-Concept of Discontinuity	Refer Table 1	Practice on FEM software (Eg: Ansys)
9	02,03,04	01,02,04	 Phases of FEA(Finite Element Analysis) Discretization Process Meshing –Element type 	Refer Table 1	Validate Bending Equation Problems solved in Week 7 using FEM software (Eg: Ansys)
10	02,03,04	01,02,04	1.Stiffness Matrix of a Bar Element 2.Global Stiffness Matrix- Properties of stiffness matrix	Refer Table 1	Validate Bending Equation Problems solved in Week 7 using FEM software (Eg: Ansys)

			3. Boundary Conditions- Methods – Types		
11	03,04	02,04,07	Problems on 1-D elements	Study the latest	Validate using FEM software (Eg: Ansys)
12	03,04	02,04,07	Problems on 1-D elements	technological changes in	Validate using FEM software (Eg: Ansys)
13	03,04	02,04,07	Problems on 2-D elements	this course and present the impact of these changes on industry	Validate using FEM software (Eg: Ansys)
Total in hours			39	13	52

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Coordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

TABLE 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution).

Sl. No.	Suggestive Activities for Tutorials
01	Understand Static Equilibrium using common examples, try to apply the principles and demonstrate in class the importance of static equilibrium in daily life, at home or at work.
02	Study the behavior of Aluminum under the action of Tensile/Compression Load. Plot Stress Strain Diagram and Demonstrate in the class the behavior of Aluminum different from that of a Cast Iron.
03	A seesaw is occupied by two children of equal weight "W" N. The center of gravity of each child is x meters from the fulcrum. The length of the board is 3x meters, y mm wide and z mm thick. Determine the maximum bending stress and shear stress in the board.
04	Tapered elastic bar subjected to an applied tensile load P at one end and attached to a fixed support at the other end. The cross-sectional area varies linearly from A $_0$ at the fixed support at $x = 0$ to $A_0/2$ at $x = L$. Calculate the displacement of the end of the bar (a) by modelling the bar as a single element having cross-sectional area equal to the area of the actual bar at its midpoint along the length, (b) using two bar elements of equal length and similarly evaluating the area at the midpoint of each, and compare to the exact solution By FEM.
05	Identify the type Beam in Traffic Light Post. Determine the displacement field for this beam subjected to UDL throughout its length.
06	Discuss procedure using the commercial package available today for solving problems of FEM. Take a Structural Problem to Demonstrate the same.
07	In 1989, Jason, a research-type submersible with remote TV monitoring capabilities and weighing 35 200 N, was lowered to a depth of 646 m in an effort to send back to the attending surface vessel photographs of a sunken Roman ship offshore from Italy. The submersible was lowered at the end of a hollow steel cable having an area of 452×10 –6 m² and E = 200 GPa. Determine the extension of the steel cable. Due to the small volume of the entire system, buoyancy may be neglected.
08	Laboratory tests on human teeth indicate that the area effective during chewing is approximately 0.25 cm ² and that the tooth length is about 1.1 cm. If the applied load in the vertical direction is 880 N and the measured shortening is 0.004 cm, determine Young's modulus.

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	Average of three
2.	CIE-2 Written Test	9	80	30	tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10
Total	CIE Marks		60		
Seme	ster End Examination (Practice)	100	40		
Total	Marks	100			

5. Format for CIE written Test

Course Name		Mechanics of Materials	Test	1/11/111	Sem	III
Course Co	ode	20ME31P	Duration	80 Min	Marks	30
Note: Ar	iswe	r any one full question from each section	. Each full q	uestion carries 10) marks.	
Section	Ass	essment Questions		Cognitive Levels(R/U/A)	Course Outcome	Marks
I	1					
•	2					
II	3					
11	4					
III	5					
111	6					

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, cognitive level and course outcomes.

5. (a) For CIE Skill Test -4

SL.	CO	Particulars/Dimension	Marks
No.			
1	01	 Verification of Forces by Lami's Theorem Finding the resultant of forces - Analytical Method -15 Marks Verification of Forces by Lami's Theorem - Practically-15Marks 	30
2	02	Determine the deformation of a given specimen subjected to Tensile/Compressive/Shear loads/Bending using UTM • Writing observations and Tabular column 10 Marks • Writing Equations required With all notations 10 Marks • Conduction of Experiment 20 Marks • Calculation and Result with Graph if any 20 Marks	60
3	01,02	Portfolio evaluation based on the average of all Practice Sessions (1-6 weeks)	10
Tota	al Marks	5	100

Duration:240Min

Duration: 240Min

5.(b)For CIE Skill Test -5

SL.	CO	Particulars/Dimension	Marks
No.			
1	02	Calculate and Plot SFD and BMD for the Given Data	40
		 Finding Shear force and Bending Moment – (10+15)=25 Marks 	
		Plot SFD and BMD – 15 Marks	
2		Apply finite element formulations to solve the given One dimensional cases and	50
	03,04	Validate using Ansys	
		• Solve by FEM Method —25 Marks	
		 Validate Using FEM software (Eg: Ansys)25 Marks 	
3	02,03,	Portfolio evaluation based on the average of all Practice Sessions (7-12	10
	04	weeks)	
Total	Marks		100

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl. No.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5						5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Schaum Outlines, "Strength of Materials", 5 Edition
2	RAMAMURTHAM. S., "Strength of Materials", 14th Edition, Dhanpat Rai Publications, 2011
3	KHURMI R S, "Applied Mechanics and Strength of Materials", 5 Edition, S.Chandand company
4	NASH W.A, "Theory and problems in Strength of Materials", Schaum Outline Series, McGraw-Hill Book Co., New York, 1995.
5	RYDER G.H, "Strength of Materials", 3rd Edition, Macmillan India Limited, 2002.
6	BANSAL R. K, "Strength of Materials", Laxmi Publications, New Delhi, 2012.
7	Schaum series, Strength of Materials
8	TIMOSHENKO S.P, "Elements of Strength of Materials", Tata McGraw-Hill, Delhi,
9	Introduction to Finite Elements in engineering by TRIRUPATHI R, CHANDRUPATLA, ASHOK D BELEGUNDA, Pearson Publications.
10	Practical Finite Element Analysis by NITIN S GOKHALE, SANJAY S DESHPANDE, Finite to Infinite Publications
	ANSYS free software tutorial((Student version)
11	https://www.google.co.in/search?biw=1024&bih= 667&q=ansys+software+tutorial&sa=X&ved=0ah UKEwjm5o MndHNAh UBsI8KHbRWDhUQ1QIIXygE

8. LIST OF SOFTWARE/LEARNING WEBSITES

- 1. www.nptel.iitm.ac.in/courses/.../IIT.../lecture%2023%20and%2024htm
- 2. www.wikipedia.org/wiki/Shear and moment diagram
- 3. www.freestudy.co.uk/mech%20prin%20h2/stress.pdf
- 4. www.engineerstudent.co.uk/stress and strain.html
- 5. www.ansys.com/Student
- 6. http://www.mece.ualberta.ca/tutorials/ansys

9. SEE Scheme of Evaluation

SL.		Particulars/Dimension	Marks
No.	CO		
1	01,02	Determine the deformation of a given specimen subjected to Tensile/Compressive/Shear loads using UTM • Writing observations and Tabular column 10 Marks • Writing Equations required With all notations 10 Marks • Conduction of Experiment 05 Marks • Calculation and Result with Graph if any 15 Marks	40
		OR	
		Calculate and Plot SFD and BMD for the Given Data	
		Finding Shear force and Bending Moment – 10 Marks	
		• Plot SFD and BMD – 15 Marks	
		Validate Using FEM software (Eg: Ansys)15 Marks	

Duration: 180 Min

2	03,04	Apply finite element formulations to solve the given One dimensional /Two dimensional cases and Validate using Ansys • Solve by FEM Method —20Marks • Validate FEM software (Eg: Ansys)20 Marks	40
3	01,02,03	Viva voce	20
	,04		
Total Marks			100

10. Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	Universal testing machine	Computerized 100 Ton Capacity With all attachments to conduct shear, bending, compression and tensile test	01
02	Ansys software		20 user
03	Desktop Computer	Latest configuration	10 nos

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	Mechanical Engineering	Semester	III
Course Code	20ME32P	Type of Course	Programme Core
Course Name	Machine Tool Technology	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale: Diploma Engineers are responsible for supervising production processes to achieve production targets and for optimal utilization of resources. For this purpose, knowledge about various machining processes is required to be imparted. The students are to be trained and equipped with adequate theoretical and practical knowledge about Metal Cutting Phenomenon and various processes like turning, drilling, milling, grinding etc. Hence, this course is introduced to provide hands on experience on various machine tools used in the manufacturing stream and to provide foundation for diploma engineers who want to further specialise in the field of precision manufacturing

2. Course Outcomes: At the end of the Course, the student will be able to:

CO-01	List relevant work place Occupational health and safety standards and explain the importance of
CO-01	the need to comply with them.
CO-02	Explain the importance of Cutting tool Geometry, list various Cutting Parameters, the role and
CO-02	use of the right Coolants and Lubricants for the given machining processes.
CO-03	Demonstrate turning operation for a given component drawing and object, prepare a process
CO-03	chart and estimate the cost of its production as per drawing.
	Demonstrate milling and drilling operation needed as per a given component drawing, list all the
CO-04	machine tools needed for the operation, prepare a process chart and estimate the cost of its
	production as per the drawing.

3. Course Content

Week	CO	PO*	Lecture (Knowledge)	Tutorial (Activity)	Practice (Skill)
			3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)
1	01	05	1. Educate about Safety standards Practiced in the machine Shop - Importance of housekeeping and good Shop floor Practices(5S) 2. Understand the Principles of First Aid. Preventive measures to be taken during Fire and Electrical emergency	Refer Table 1	1.Read and interpret the safety signs displayed in the Machine shop Instructor has to show various Safety sign charts and Personnel Protective Equipment (PPE) and ask the trainees to identify and record in the dairy 2.Read and interpret the PPE

			Types of Fire extinguisher (Class A,B,C,D) 3. Knowledge about Safety and Environment Regulations		First aid and basic training Identify and Segregate waste material (cotton waste, metal chips, burrs etc.) Arrangement of waste in bins 3. Hazards identification and avoidance Preventive measure for electrica accidents Select the fire extinguisher according to type of fire 4. Operate the Fire extinguisher and extinguish the fire Preventive measure for Oil leakages and related Hazards Practice the safety norms while working on Deferent Machine Tool
2	02	01,04	1 Lubrication- Need of Lubrication- Selection of Lubricant as per ISO standard. 2.Theory of metal Removal- Traditional & Non Traditional material removal process- Chip forming & Non chip forming 3. Types of cutting tools- Single point tools-Multi point tools - Specification of Single Point Cutting Tool, Parting, Knurling Tool, V- tool	Refer Table 1	 Instructor has to display all the Lubricants used in the section and brief about its uses Select a Proper lubricant and demonstrate the lubrication of various m Ask the students to record in the Dairy Instructor has to show all the tools, machineries and measuring instruments used in the machine shop and brief about its uses. Ask the students to record in the Dairy. Identify the type of Chips formed and record in the dairy
3	02	01	1. Grinding- Abrasives- Applications of Natural abrasives- stand stone (Quartz), Corundum and Emery Diamond and Garnets- Application of Manufactured Abrasives- Silicon Carbide, Aluminum Oxide Cubic boron Nitride 2. Explain – Grit, Grade, Structure, Bond, Type ISO Designation of Grinding Wheels 3. Tool Geometry-Tool materials and Designation-Tool life & Wear	Refer Table 1	1. Practice on Grinding machine 2 Grinding Practice of Single point tool as per tool Geometry

			Concept of Cutting speed-Depth of cut-Feed		
4	03	01	1.Introduction to Surface Texture-Indication of Roughness Symbols-Complete surface symbol chart, Grade and Numbers,- Tolerances- Unilateral and Bilateral 2.Introduction to Lathe-Types of lathe- Capstone and Turret Lathe, Automatic Lathe and others - Specification of a Center Lathe Cutting Fluids- Selection of cutting fluids- 3.Explain Work holding Devices- Tool Holding Devices	Refer Table 1	 Read and interpret the Surface finish and Tolerances in the given Production drawing. Identify the main Parts of Lathe and its functions Identify the movements in Lathe Parts Carriage Cross Slide Tail Stock Remove the Chuck from Spindle Nose and again mount on it Demonstration of holding Work piece in 3-Jaw and 4-Jaw chuck Idle operation of Lathe. Rotation of spindle in Clockwise and Counter clockwise direction Identify the Lubrication Parts in Lathe Set the Spindle speed - Feed -Lever Position.
5	03	01,02, 04	 Explain Plain turning, Step turning, Knurling and Chamfering Operations Prepare the Process plan as per the given drawing for Plain Turning, Step Turning, Knurling and Chamfering Estimate the Production cost per Piece as per the given drawing for Plain Turning, Step Turning, Knurling and Chamfering (Consider all Direct and Indirect costs) 	Refer Table 1	1. Read and Understand the given Drawing 2. Select the suitable Raw material 3. Fix the given material between headstock and Tail Stock after performing Facing and Countersinking. 4. Select the Speed and Feed 5. Select and set the appropriate cutting tools as per the sequence of operations 5 Perform all operations as per the process plan 6. Check the dimensions using measuring instruments 7. Observe and Identify the Chip Formation
6	03	01,02, 04	1.Explain Taper turning operations by different methods-Calculate Taper angles for	Refer Table 1	Read and Understand the given Drawing

			different Taper turning component Drawings 2. Prepare the Process plan as per the given drawing for Taper Turning 3. Estimate the Production cost per Piece as per the given drawing for Taper Turning(Consider all Direct and Indirect costs)		 2. Mark the required dimensions as per the given drawing for Taper turning 3. Fix the given material between headstock and Tail Stock 4. Select and Set the tools to perform Taper turning 5. Select the Speed and Feed 6. Perform the Taper Turning operations and record the machining time. 7. Measure the Taper angle in the given specimen using Bevel Protractor
7	03	01,04	1.Explain Thread cutting Mechanism a) Half Nut Mechanism b) Tumbler Gear Mechanism 2. Prepare the Process plan as per the given drawing for Thread cutting 3. Estimate the Production cost per Piece as per the given drawing for Thread cutting (Consider all Direct and Indirect costs)	Refer Table 1	1. Read and Understand the given Drawing 2.Fix the given material between headstock and Tail Stock 3.Select and Set the tools to perform Thread cutting operations 4.Select the Speed ,Feed and lubricant 5.Perform the thread cutting operations Measure the Pitch of the thread for the given specimen by using Pitch Gauge
8	04	01,04	 Introduction to Milling – Types of milling machine Specification of a Milling machine Types of Milling cutters and their uses- Milling Cutter Nomenclature- Specification of Milling Cutter Methods of Milling-Up Milling and Down Milling- Work holding devices 	Refer Table 1	 Identification of Milling machine Parts and its Usage Demonstrate the working Principle of Milling machine and movements of Table and Arbor Setting of Vice and Job on the Table of Milling Machine Set the Cutter on the Arbor Illustrate the safety points to be observed while working on the Milling machine Identify and Select the different Milling Cutters Demonstrate the Up- milling and Down – Milling Process
9	04	01,02, 04	 1.Explain Plain Milling Operation 2 Prepare the Process plan as per the given drawing (Solid Block) for Plain Milling 3. Estimate the Production cost per Piece as per the given drawing for Plain Milling 	Refer Table 1	Perform Plain Milling of Six faces of a Solid Block Check the accuracy of the Job with suitable Measuring Instruments

			Operation (Consider all Direct and Indirect costs)		
10	04	01,02, 04,07	 Explain Key way and V- slot Operation Prepare the Process plan as per the given drawing for Key way and V- slot Estimate the Production cost per Piece as per the given drawing for Key way and V- slot 		Perform Milling of Keyway and V Slot Check the dimensional accuracy with suitable Measuring Instrument
11	04	01,02, 04,07	 Explain Gear cutting by Indexing Methods Prepare the Process plan as per the given drawing for Gear cutting Estimate the Production cost per Piece as per the given drawing for Gear cutting 	Study the latest technological changes in this course and present the impact of these changes on industry	1. Demonstrate Indexing Head 2. Set and Align Indexing Head with reference to the Job on Milling machine Table 3. Perform Gear Teeth on a Blank by Simple Indexing Method

12 04	01,02, 04,07	 Introduction to Drilling – Types of Drilling Machines-Specification of Drilling Machines-Specification of Drill Bit, Reamer, Die and Taps Nomenclature of Drill Bit, Reamer, Die and Taps- Standard sizes of Drill Bits Explain Operations performed in Drilling Machines- Drilling, Counter sinking, Reaming, Boring, Tapping Prepare the Process plan as per the given drawing and Estimate the Production cost per Piece as per the given drawing 		 Identification of Drilling machine Parts Demonstrate the working Principle of Drilling machine Set the Vice and Job on the Table of Drilling machine Illustrate the safety points to be observed while working on the Drilling machine Identify and Select the different Drill Bits Set the Drill bits on the spindle. Drill Equally spaced holes (Circular/Square/Rectangul ar plate) Finish the pre-drilled hole with a Reamer
13 01, 02, 03, 04 Total in hou	NG.	Demonstrate the manufacturing of following components using YouTube Videos 1. Fasteners 2. Propeller Shaft 3. Gears 4. Piston manufacturing Discuss and Prepare a Report on the videos Presented for each manufactured component.	13	Demonstrate the manufacturing of following components using YouTube Videos 1. Tube and Piston Rod Manufacturing. 2. Cylinder manufacturing etc., 3. Single point tool 4. Drill bits Etc. Discuss and Prepare a Report on the videos Presented for each manufactured component

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Coordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl.No.	Suggestive Activities for Tutorials					
01	Present a report on Machine safety Guidelines as per the Applicable standard Guidelines (CSA Standard Z 432-04 (R 2009)) including hazards associated with machines, Power tools, Machine Shop. Also Discuss general controls for reducing machine Hazards. https://ehs.utoronto.ca					

Discuss Common grinding Problems And their Remedies. Also discuss the need for Bala the Grinding Wheels https://www.Euromarcconz Whether it's granite for your countertops, backsplash, or floor tiles, making pristine curbe achieved with proper precautions, techniques, and specialized granite cutting tools making tiles and slabs of this hard rock. Discuss and present a report on those tools. Present a Report on Applications of Inversions of Kinematic Mechanisms: With-worth quick return motion mechanism in Shaper Double-slider crank mechanism Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	ncing
https://www.Euromarcconz Whether it's granite for your countertops, backsplash, or floor tiles, making pristine cut be achieved with proper precautions, techniques, and specialized granite cutting tools making tiles and slabs of this hard rock. Discuss and present a report on those tools. Present a Report on Applications of Inversions of Kinematic Mechanisms: With-worth quick return motion mechanism in Shaper Double-slider crank mechanism Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing	0
be achieved with proper precautions, techniques, and specialized granite cutting tools making tiles and slabs of this hard rock. Discuss and present a report on those tools. Present a Report on Applications of Inversions of Kinematic Mechanisms: With-worth quick return motion mechanism in Shaper Double-slider crank mechanism Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
making tiles and slabs of this hard rock. Discuss and present a report on those tools. Present a Report on Applications of Inversions of Kinematic Mechanisms: With-worth quick return motion mechanism in Shaper Double-slider crank mechanism Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
Present a Report on Applications of Inversions of Kinematic Mechanisms: With-worth quick return motion mechanism in Shaper Double-slider crank mechanism Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	or
With-worth quick return motion mechanism in Shaper Double-slider crank mechanism Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse Surface finish symbols in a Production Drawing	
Double-slider crank mechanism Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
Present a Case Study on Machine tool chatter arising in an interrupted turning process https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
https://core.ac.uk/download/pdf/33663698.pdf Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse Surface finish symbols in a Production Drawing	
Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
Present a Report on Influence of Cutting Parameters on cutting force and Surface finish Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
Turning operation https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	in
06 https://www.sciencedirect.com Analyse tolerances in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
Analyse Surface finish symbols in a Production Drawing Analyse Surface finish symbols in a Production Drawing	
Analyse Surface finish symbols in a Production Drawing	
Analyse Surface finish symbols in a Production Drawing	
Analyse Surface finish symbols in a Production Drawing	
oo Analyse Surface finish symbols in a Production Drawing	
00	
Demonstrate the various measuring instruments used in Machine Shop	
09 Demonstrate the various measuring instruments used in Machine Shop	
Collect the sample piece of various raw materials used in machine shop and Discuss the	 eir
mechanical, chemical and Physical properties	
incomment, entitled and i hysical properties	

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion			
1.	CIE-1 Written Test	5	80	30	Average of three			
2.	CIE-2 Written Test	9	80	30	tests			
3	CIE-3 Written Test	13	80	30	30			
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill			
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20			
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10			
		60						
	Semester End Examination	n (Practice)	180	100	40			
	Total Marks 100							

5. Format for CIE written Test

Course Name		Machine Tool Technology	Test	I/II/III	Sem	III		
Course Cod	e	20ME32P	Duration	80 Min	Marks	30		
Note: Answ	Note: Answer any one full question from each section. Each full question carries 10 marks.							
Section		Assessment Questions		Cognitive Levels(R/U/A)	Course Outcome	Marks		
T	1							
1	2							
3								
II	4							
III	5							

6

Duration: 240Min

Duration: 240 Min

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5. (a) For CIE Skill Test -4

SL.	СО	Particulars/Dimension	Marks
No.			
1	03	 Question on Turning operations with Process plan, Production Cost of the product for a Given parameters Process plan includes Component Drawing ,process list and Tool selection=25marks Costing includes Raw material ,process and finding Total cost , selling Price and cost of scrap =25marks Performance of Turning and Taper turning operations(20+15)=35 marks Dimensional accuracy=05 Marks 	90
2	01,02,03	Portfolio evaluation based on the average of all Practice Sessions (1-6 weeks)	10
Tota	l Marks		100

5. (b) For CIE Skill Test -5

SL.	СО	Particulars/Dimension	Marks		
No.					
		Question on Milling operations with Process plan and Production Cost of the product for a Given parameters	90		
1	04	 Process plan includes Component Drawing, process list and Tool selection= 20marks Costing includes Raw material, process and finding Total cost, selling Price and cost of scrap = 30marks Performance of Milling operations including Key/Slot/Gear teeth 			
		cutting operations (20+15)= 35 marks • Dimensional accuracy=05 Marks			
2	03,04	Portfolio evaluation based on the average of all Practice Sessions (7-12 Weeks)	10		
Total	Marks		100		

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5						5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description				
1	Mechanical estimation and costing T.R.Banga and S.C.Sharma Khanna publishers				
2	Mechanical Estimation Malhothra				
3	Industrial Organization and Engineering				
3	Economics T.R. Banga and S.C.Sharma Khanna publishers				
4	Mechanical Estimation NITTTR Chennai NITTTR Chennai				
5	Mechanical costing and Estimation. Singh and Khan Khanna Publishers				
6	Process Planning & Cost Estimation M.Adithan New age International				
Rao, P.N., Manufacturing Technology, Vol I & II, Tata Mcgraw Hill Publishing Co					
/	1998				
8	Seropekalpakjian, Steven R Schmid Manufacturing Engineering and Technology- Pearson				
0	Education-Delhi				
	Sharma, P.C., A Textbook Of Production Technology – Vol I And II, S. Chand & Company Ltd.				
9	New Delhi, 1996				
10	HMT – "Production Technology", Tata Mcgraw-Hill, 1998				

8. LIST OF SOFTWARES/ LEARNING WEBSITES:

- 1.http://calculatoredge.com/index.htm#mechanical
- 2.www.nptel.ac.in/courses/112105126/36
- 3.www.youtube.com/watch?v=T5gjkYvMg8A
- 4.www.youtube.com/watch?v=ESKoaZtoB1E
- 5.www.freevideolectures.com

9. SEE Scheme of Evaluation

SL. No.	СО	Particulars/Dimension	Marks
1	03,04	Question on Turning operations with Process plan and Production Cost of the product for a Given parameters • Process plan includes Component Drawing, process list and Tool selection= 20marks • Costing includes Raw material ,process and finding Total cost , selling Price and cost of scrap =25 marks • Performance of Operations =30marks • Dimensional accuracy=05 Marks OR Question on Milling operations with Process plan and Production Cost of the product for a Given parameters • Process plan includes Component Drawing, process list and Tool selection= 20marks • Costing includes Raw material, process and finding Total cost , selling Price and cost of scrap = 25marks • Performance of Milling operations including Key/Slot/Gear teeth cutting operations (20+10)= 30 marks • Dimensional accuracy=05 Marks	80
2	01,02, 03,04	Viva voce	20
	Total N	Marks	100

Duration: 180min

10. Equipment list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	Center lathe With all accessories and attachments(Gear driven)	Max 50mm Dia Holding capacity 500mm Center distance .Swing over dia 200mm	20
02	HSS cutting tool	20*20*150MM	40
03	HSS cutting tool	10*10*150MM	20
04	Cemented carbide tipped tools with holder brazed	For turning	20
05	Knurling tool Rough	Standard	10
06	Knurling tool Smooth	Standard	10
07	Vernier calipers	300mm	20
08	Outer caliper	5omm OD	20
09	Steel scale	300mm	20
10	Dial gauge for setting of work	Standard	10
11	Counter sunk Drill Bit	6mm Taper shank	20
12	Upright Drilling Machine	Upto 24mm drill With all attachment	01
13	Sensitive Drilling Machine	Upto 18mm drill	01
14	Machine Vice (To hold Job)	120mm Jaw Gap	05
15	Drill Bit set	6mm to 24mm	10 set
16	Marking Divider	200mm dia	
17	Marking punch	Standard	20nos
18	Combination Set Square	Standard	10 nos
19	Surface plate	300*300mm	01 no
20	Column and Knee type Vertical MILLING machine With all attachments	.Table Travel of 800mm .24mm cutters Bore dia (ID)	01no
21	Plain milling Cutter 24mm ID/Slab milling	Standard Size for Practice	05
22	Key way cutter	6mm	10
23	Key way cutter/Slot cutter	12	10
24	Gear cutter (Spur teeth)	Standard Size for Practice	10
25	Concave Milling cutter	Standard for Size Practice	10
26	Convex Milling cutter	Standard Size for Practice	10
27	Key way Milling cutter	40mm dia	10
28	End Milling Cutter	24mm dia	10
29	Bench Grinder	300mm wheel dia Rough and Smooth	02

Government of Karnataka DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

Programme	Mechanical Engineering	Semester	III
Course Code	20ME33P	Type of Course	Programme Core
Course Name	Manufacturing Processes	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale: Diploma Engineers are responsible for supervising production processes to achieve production targets and for optimal utilization of resources. For this purpose, knowledge about various manufacturing processes is essential. This requires training the students in casting and metal forming domain so as to equip them with adequate theoretical and practical knowledge about the various metal casting and forming processes like rolling, forging, drawing, extrusion, Sheet metal work etc. Hence this course is introduced to provide hands on experience on various manufacturing processes.

2. Course Outcomes: At the end of the Course, the student will be able to

CO-01	Produce patterns, moulds, and casting of a given component drawing and estimate the cost of casting.
CO-02	Demonstrate forging operation for a given component drawing and estimate the cost of forging.
CO-03	Prepare sheet metal drawing, demonstrate sheet metal operation and estimate the costs of Sheet metal operation.
CO-04	Explain rolling and extrusion operation and list applications of metals forming processes.

3. Course Content

			Lecture (Knowledge)	Tutorial (Activity)	Practice (Skill)
Week	СО	PO*	3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)
1	01	01,04	 Introduction to foundry – You tube videos on foundries Explain the safety Precautions to be taken in foundries Explain the need of a Pattern- Types of Patterns—Solid or Single Piece pattern, Split Pattern, Loose Piece Pattern, Match Plate Pattern, Gated Pattern, Sweep Pattern, Skeleton-Pattern Allowances- Materials used for Pattern 	Refer Table 1	1.Identify the tools and equipment used in foundry with application 2. Prepare a single Piece wooden Pattern considering all allowances
2	01	01,04	1.Molding Sand-Types 2.Ingredients and Properties of Molding Sand	Refer Table 1	1.Prepare a molding sand 2. Preparation of Mold with the help of Pattern

			3. Importance of Core and Core prints-Gates-Runner-Riser		3. Melt the metal (wax) and pouring it into the mold cavity
3	01	01,04	Explain Defects in Casting Inspection of Casting Determination of Production Cost of a given material considering Raw material, Process cost, Overheads and other expenses	Refer Table 1	 Cutting Runner and riser in the casted component Cleaning of the casted component Inspection of the casted component Record the defects, if any
4	02	01,04	1.Introduction to basic Metal Forming Process and Applications- Show You tube Video's on Metal Forming Process 2. Explain Hot and Cold Working Process with Application Show You tube Videos on Hot and Cold Working Process 3.Introduction to forging operation- Types of forging- Hand forging and Power forging	Refer Table 1	1.Demonstrate safety precautions to be followed in Forging 2. Identify the tools and equipment's used in forging 3. Forging Practice (Hammering)
5	02	01,04	1.Explain forging Operations - Upsetting, drawing down, Cutting, Bending 2. Explain Punching and Drifting, Setting down and Finishing, Forge Welding 3 Estimation of Length of Raw material required to convert Circular rod to Square and Calculate the Production Cost considering direct and Indirect expenses.	Refer Table 1	Conversion of Circular rod to Square
6	02	01,04	1. Estimation of Length of Raw material required to convert Circular rod to Hexagon and Calculate the Production Cost considering direct and Indirect expenses. 2. Explain the working principle of Power hammer 3. Show the you tube videos on components produced by Power forging	Refer Table 1	Conversion of Circular rod to Hexagon
7	02	01,04	 Estimation of Length of Raw material required to convert Hexagon to" L" shaped Nail and Calculate the Production Cost considering direct and Indirect expenses Explain Forging losses-Forging Defects 	Refer Table 1	Conversion of Hexagon to " L" Nail as per the given drawing

			3. Show the you tube videos on components produced by forging		
			operations		
			1.Introduction to sheet metal- Show You tube videos on sheet metal operations and Applications		Identify and demonstrate the various tools used for sheet motal energians.
8	03	01,04	2.Explain sheet metal materials – Standard Gauges of sheet - Specification of Sheet	Refer Table 1	sheet metal operations. 2. Measure the gauges of sheet 3. Demonstrate the
			3.Explain different Sheet metal operations		operations performed on Shearing machine
			1.Explain the Development of Cone		
			and Cylinder		1. Prepare Cone, Cylinder, Prism, Pyramid and
9	03	01,04	2. Explain the Development of Prism and Pyramid	Refer Table 1	Funnel
			3. Explain the Development of Funnel		2. Join end surfaces by means of Seam Joint
			1.Explain the Development of Tray		1. Prepare a Tray
			1.Explain the Development of Tray		1. Trepare a Tray
10	03	01,04	2.Explain the Development of Transition pieces	Refer Table 1	2. Prepare any Transition Piece
			3. Explain the Development of Transition pieces		
11	03	01,04 07	 Find the total Production cost of a sheet metal components like Open container, Cylindrical Drum Introduction to Power Press -Press size- Press tools - Die Accessories 		 Present You tube Videos on Press work operations Record the observations made
			3. Types of Die and its		and prepare a report.
			operations 1.Introduction to Rolling- Nomenclature of Rolled Products-	Study the latest	
12	04	01,07	Dies used in rolling process 2.Types of Rolling mills-2 high mill- 3 High mill – 4 High mill- Cluster mill, Tandem Mill, Planetary mill, Defects in Rolling 3. Introduction to Extrusion and Drawing – Types of Extrusion Process. Wire and Tube Drawing Process, Dies used in Extrusion	technological changes in this course and present the impact of these changes on industry	Video/ Virtual exposure on Rolling and Extrusion
			and Drawing Process Demonstrate the manufacturing of		Demonstrate the
13	04	01,07	following components using YouTube Videos 1. Crank Shaft 2. Valves		manufacturing of following components using YouTube Videos 1. TMT Steels
			3. Wheel4. Gear case5. Hair springs		 Channel sections Pump Casings Rolling of Sheets

	Discuss and Prepare a Report on the videos Presented for each manufactured component		5. Tooth paste tube 6. Pipes 7. Tubes etc., Discuss and Prepare a Report on the videos Presented for each manufactured component
Total in hours	39	13	52

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Coordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl.No.	Suggestive Activities for Tutorials
01	From heavy casting of 300Kg to small casting of 30 kg, investment casting method is used for as wide for hi-tech industrial applications. Investment casting is largely relied on for complicated designs that cannot be casted using any other method. Discuss. Also, Present the Preparation of Patterns for the Process. Compare the relative surface finish of this process with other Casting Processes.
02	Discuss the forging defects commonly occurring in forgings, their causes and Remedies. Present the methodology for measuring Forging defects. https://studentlesson.com
03	A Gas cylinder is produced by Sheet metal operations. Prepare the development and Present the procedure involved in making the given component.
04	Identify the forming process adopted in making Tooth Paste Tubes. Present the process. List the limitations involved and solutions to overcome these limitations.
05	Estimation of Length of Raw material required for a forged bolt and Calculate the Production Cost considering direct and Indirect expenses.

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion		
1.	CIE-1 Written Test	5	80	30	Average of three		
2.	CIE-2 Written Test	9	80	30	tests		
3	CIE-3 Written Test	13	80	30	30		
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill		
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20		
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10		
	Total CIE Marks 60						
	Semester End Examination	n (Practice)	180	100	40		
	<u> </u>	·	•	Total Marks	100		

5. Format for CIE written Test

Course Nam	Manufacturing Processes	Test	I/II/III	Sem	III/IV		
Course Code	20ME33P	Duration	80 Min	Marks	30		
Note: Answer any one full question from each section. Each full question carries 10 marks.							
Section	Assessment Questions		Cognitive Levels	Course Outcome	Marks		

I	1		
	2		
11	3		
11	4		
III	5		
	6		

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

Duration: 240 Min

Duration: 240 Min

5. (a) For CIE Skill Test - 4

SL.	CO	Particulars/Dimension	Marks
No.			
1	01	Question on Casting Process With Process plan, Costing of the product for a Given parameters including pattern, melting and other expenses • Process plan including Component Drawing ,process list and Tool/Equipment's selection= 15 marks • Preparation of Mold by using Pattern=25 Marks • Costing including Raw material ,process and finding Total cost , selling Price =25 Marks • Operation performed =20 marks • Dimensional accuracy = 05 Marks	90
2	01	Portfolio evaluation based on the average of all Practice Sessions (1-6 weeks)	10
Total	Marks	•	100

5. (b) For CIE Skill Test -5

SL.	СО	Particulars/Dimension	Marks
No.			
1	02	 Question on Forging operation with Process plan, Calculation of Raw material Length, Costing of the product for a Given parameters considering all Possible Losses. Process plan including Component Drawing ,process list and Tool/Equipment's selection= 15 marks Costing including Raw material length ,process time and finding Total cost , selling Price = 25 marks Operations Performed with Dimensional accuracy= 20Marks. 	60
2	03	One Skill oriented Question on Sheet Metal work • Development for a given drawing =20 Marks • Sheet metal Operation with Dimensional accuracy =10 marks	30
3	02,0 3	Portfolio evaluation based on the average of all Practice Sessions (7-12 weeks)	10
Total	l Marks		100

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6

3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5						5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Elements of Workshop Technology (Vols. 1 and II) by Hajra Chaudhary
2	Production Technology By R.K. Jain
3	Foundry Technology By O.P.Khanna
4	Engineering Drawing Vol-2 By K.R.Gopala Krishna
5	Engineering Drawing By N.D.Bhat

8. SEE Scheme of Evaluation

SL. No.	со	Particulars/Dimension	Marks
1	01,02	 One Skill oriented Question on Casting Process plan including Component Drawing ,process list and Tool/Equipment's selection= 15 marks Preparation of Mold by using Pattern=30Marks Other Operations performed =10 marks	55
2	03	One Skill oriented Question on Sheet Metal work • Development of product=15 Marks • Performance and Operation with Dimensional accuracy =10 marks	25
4	01,02,03,04	Viva voce	20
		Total Marks	100

9. Equipment list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	Moulding box	300*300*100mm	20
02	Moulding Rammer	Standard size	20
03	Moulding tool kit	Standard size	20
04	Electric furnace for melting (Wax/Low melting point metal with crucible and ladder for pouring)	Standard size	04
05	Portable grinder for cleaning of casting	Standard size	02
06	Sand Blaster	Standard size	04
07	Ball peen Hammer	½ lb	05
08	Pattern Making Tool kit	Standard size	10
09	Anvil For Forging	Standard size	05
10	Sledge hammer	2 LB	10

Duration: 180 Min

11	Hand hammer	1 lb	10
12	Flatteners	Standard size	20
13	Flat Tongs	Standard size	20
14	Round Tongs	Standard size	20
15	Steel scale	300mm	20
16	G I Bucket for Quenching	15 lts capacity	10
17	Open Heart Furnace with stand and Blower	Standard size	04
18	Hot Chisel	24mm size	10
19	Sheet shearing Machine(Manual or M/c type)	Standard size	04
20	Sniper for cutting sheet	Standard size	20
21	Metal stake	Standard size	10
22	Wooden mallet	Standard size	20
23	Plastic Hammer	Standard size	20
24	Bench vice for Bending of sheet	Standard size	05
25	Brazing Gun	Standard size	10

Government of Karnataka

Programme	Mechanical Engineering	Semester	III
Course Code	20ME34P	Type of Course	Programme Core
Course Name	Fluid Power Engineering	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

DEPARTMENT OF COLLEGIATE AND TECHNICAL EDUCATION

1. Rationale: Fluid power is one of the basic building blocks of modern automation and is most widely used system to convert fluid energy into useful work through the use of pump, compressor, control valves, actuators and other controlling elements. This technology is used to power a range of items such as tools, construction equipment and machineries, automotive and machineries in manufacturing sectors. Fluid power engineering involves study of properties of fluids, laws governing flow of fluids, working principles of fluid machineries and knowledge of control of machine movements. This course allows the students to develop the knowledge and understanding of the operational requirements of fluid power system and be able to recognise circuit components and build the circuits for applications needed in daily life

2. Course Outcomes: At the end of this course, student will be able to

CO-01	Measure fluid discharge through Channels and Pipes using instruments and estimate the size of the pipe needed for a given population size.
CO-02	Select the right hydraulic machinery to be used in a specific application for a given head and discharge.
CO-03	List the various components and its use in a given fluid power system.
CO-04	Build a simple fluid power system for a given application

3. Course Content

			Lecture (Knowledge)	Tutorial (Activity)	Practice (Skill)
Week	СО	PO*	3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)
1	01	01,04	 Explain classification and Properties of fluids- Units- Conversion of Cubic meters- Liters – Gallons -TMC Explain Pascal Law, Equation of continuity, Concept of Total Energy Explain Bernoulli's equation and its Applications- Venturi meter, Pitot tube, Orifice meter 	Ref Table 1	1.Find Discharge of a fluid through Venturimeter
2	01	01,04	Explain Discharge through Rectangular Notch -Numerical Problems Explain Discharge through V- notch - Numerical Problem Explain Flow through Pipes- Major and Minor Losses	Ref Table 1	1. Finding Discharge through Rectangular Notch 2. Finding Discharge through V- Notch

3	01	01,04	 Determine co-efficient of friction by using Chezy's and Darcy's formulae Design a Pipe for a given number of Inhabitants Design a Pipe for a given discharge 	Ref Table 1	1.Finding Co-efficient of Friction in Pipes2. You tube presentation on fluid flow through pipes and notches
4	02	01,02,04	 Classification of Pumps Explain the Working Principle of Centrifugal Pump and its Application Explain the Working Principle of Monoblock and its Application 	Ref Table 1	 Find the discharge through Centrifugal Pump Servicing and Repair of Centrifugal Pumps
5	03	01,02,04	1.Explain the Working Principle of Submersible pump and its application 2.Explain the Working Principle of Reciprocating pump and its application 3. Select a suitable Pump for a given Application	Ref Table 1	Servicing and Repair of Submersible pumps
6	02	01,04	1.Classification of Hydraulic Turbines2.Select a suitable Turbine for a given Head3. Explain the Working Principle of Impulse Turbine and its Application	Ref Table 1	Determine Performance of Pelton wheel
7	02	01	 Explain the Working Principle of Reaction Turbine and its Application Explain the Importance of Draft tube, Penstock and Surge Tank Video on Hydraulic Power Plant 	Ref Table 1	Video on fluid flow from source to End application Eg: Oil Refineries, Hydraulic Power plant, Water distribution through pipe lines
8	03	01	Identify the basic components of Fluid power Systems with Symbols and Application • Air compressor • Air Drier • FRL Unit • Gear Pump • Pressure control Valve- Pressure Reducing Valve, Pressure Intensifier • Direction control Valves - 3/2, 5/2, 4/2 • Flow control Valve • Needle Valve • Check Valve • Shuttle Valve • Quick Exhaust Valve • Time Delay Valve	Ref Table 1	Video on Working principles of components used in Fluid Power Systems
9	03	01	 Explain Valve Actuating mechanisms Spring, Lever, Push button, Solenoid Explain the role of Accumulators in fluid power systems. Explain working principle of Actuators- Single Acting, Double acting Air Cylinders, Air Motors 	Ref Table 1	Video on Working principles of components used in Fluid Power Systems

Total i	n hou	ırs	39	13	52
13	04	01,07	 Build Circuit for a machine device driven by a single acting cylinder with actuation at least two mutually operated DC valves (Safety circuit with OR and AND Gates) Build Circuit for the Clamping Device of a Drilling Machine of a Drilling machine such that the clamps are activated before the drill is fed to the Work Build a Circuit for your Own Application 		Execute minimum 2 Circuits Practiced in the Class using Trainer Kit or Simulation Software, including developing your Own Pneumatic Circuit to perform certain function
12	04	01,03,07	 Build a Fluid Power circuit for Automatic reciprocating motion of a double acting Cylinder Build a circuit for feeding a strip with following sequences: Holding the strip, moving the strip forward on to the tool, maintaining the strip in that position and returning the strip to its original position after work is over. Design a Circuit to press fit a pin to a hole with a precondition that while actuating of the cylinder, both the hands of the operator should be engaged 	Study the latest technological changes in this course and present the impact of these changes on industry	Execute minimum 2 Circuits Practiced in the Class using Trainer Kit or Simulation Software
11	04	01,04,07	 Build a Fluid Power circuit for double Acting Cylinder being controlled by 4/2 DC Solenoid Operated Valve Build a Circuit for Stamping operation by using 3/2 DC Valve with Single Acting Cylinder Build a Circuit for Automatic Opening and Closing of Door by /using double Acting Cylinder being controlled by 4/2 DC Valve 		Execute minimum 2 Circuits Practiced in the Class using Trainer Kit or Simulation Software
10	04	01,04	 Build a Fluid Power circuit to Control Speed of a Single Acting cylinder Build a Fluid Power circuit to Control Speed of a Double Acting cylinder Build a Fluid Power circuit for Pilot control Double Acting Cylinder 	Ref Table 1	Execute the circuit Practiced in the Class using Trainer Kit or Simulation Software
			Explain the importance of Seals and Packages		

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Co-Ordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl.No.	Suggestive Activities for Tutorials
	Document and present the application of Pascal's Principle in Real Life by selecting Hydraulic
01	Jack/Hydraulic Brakes/ Hydraulic Lift
	https://www.studiousguy.com
02	Present a report on possible failures in Submersible Pumps and trouble shoot the same.
03	Discuss and present the application of Pneumatics in farming using case study: Farming in
03	California- The issues and Positivity's
04	Build and Present an Electro-Pneumatic Brake system used in Trains. Also, document Brake
04	Cylinder Pressure effect.
05	Prepare a line Diagram of the pipe line of your Residence or College
06	Prepare a water distribution line diagram from Water reservoir to college
07	Prepare a line diagram for rain water harvesting of your Residence or College
08	Study and prepare a report on water distribution in Dip Irrigation System.

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	Arraya as of three toats
2.	CIE-2 Written Test	9	80	30	Average of three tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10
		60			
	Semester End Examination	n (Practice)	180	100	40
		100			

5. Format for CIE written Test

Course Name		Manufacturing Processes	Test	I/II/III	Sem	III/IV
Course Coo	de	20ME33P	Duration	80 Min	Marks	30
Note: Ansv	ver a	ny one full question from each section. Ea	ach full ques	tion carries	10 marks.	
Section		Assessment Questions		Cognitive Levels	Course Outcome	Marks
т	1					
I	2					
II	3					
11	4					
111	5		·			
III	6					

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5. (a)For CIE Skill Test -4

SL.	CO	Particulars/Dimension	Marks
No.			
1	01	One Experimental Question on case related to Application of Bernoulli's theorem (Venturimeter/Orifice/Pitot tube) (Group of 5 Students) • Writing observations and Tabular column 10 Marks • Writing Equations required With all notations 15 Marks	45

Duration: 240 Min

		Conduction of Experiment 10 Marks Calculation and Result 10 Marks	
2	01	 One Experimental Question on Channels/ Pipes (Group of 5 Students) Writing observations and Tabular column 10 Marks Writing Equations required With all notations 15 Marks Conduction of Experiment 10 Marks Calculation and Result 10 Marks 	45
3	01	Portfolio evaluation based on the average of all Practice Sessions (1-6 Weeks)	10
	Total Marks		100

5. (b) For CIE Skill Test -5

SL.	CO	Particulars/Dimension	Marks
No.			
1	03,04	Two Skill based Question to Design a Pneumatic Circuit for the given case (Individual Experiment) = 45 Marks each • Writing Circuit Diagram with all components-25 marks • Building Circuit on the Kit -10marks • Showing the Result/output - 10 Marks	90
2	03,04	Portfolio evaluation based on the average of all Practice Sessions (7-12 Weeks)	10
Total	Marks		100

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
				Ave	rage Marks= (8-	+6+2+2)/4=4.5	5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Bansal. R.K., "Fluid Mechanics and Hydraulics Machines", 9th Edition, Laxmi
1	Publications Private Limited, New Delhi. 2011.
2	R.S.Khurmi, "Fluid Mechanics and Machinery", S.Chand and Company, 2nd Edition, 2007.
3	Hydraulics & Pneumatics – Andrew Parr, Jaico Publishing House New Delhi.
	Hydraulic and Pneumatic Controls Understanding Made Easy- K.S.Sundaram,- S.chand Company
4	Delhi
	Ramamrutham. S, "Fluid Mechanics, Hydraulics and Fluid Machines",
5	Dhanpat Rai & Sons, Delhi, 2004.
	P. N Modi and S. M. Seth, "Hydraulics and Fluid Mechanics Including Hydraulics Machines", 19th
6	Edition, Standard Book House, 2013

Duration: 240 Min

7	Hydraulic and Pneumatic Controls- Srinivasan, R Vijay Nicole Imprints Private Limited, 2/e, 2008
8	Pneumatic And Pneumatics Controls -Understanding Made Easy - K.S.Sundaram,-S.chand Company Delhi
9	Pneumatic Systems - Majumdar, S.RTata McGraw-Hill Publication, 3/e, 2013

8. LIST OF SOFTWARES/ LEARNING WEBSITES:

- 1. www.youtube.com/watch?v=VyR8aeioQrU
- 2. http://www.youtube.com/watch?v=R6 q5gxf4vs
- 3. www.howstuffworks.com
- 4. . http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/machine/ui/TOC.htm
- 5. https://www.youtube.com/watch?v=F 70hKUYV5c&list=PLE17B519F3ACF9376
- 6. https://www.youtube.com/watch?v=z0]6gWDMTfE&list=PLC242EBB626D5FFB5
- 7. http://www.youtube.com/watch?v=0p03UTgpnDU
- 8. http://www.youtube.com/watch?v=A3ormYVZMXE
- 9. http://www.youtube.com/watch?v=TjzKpke0nSU
- 10. http://www.youtube.com/watch?v=vl7GteLxgdQ
- 11. http://www.youtube.com/watch?v=cIdMNOysMGI
- 12. www.boschrexroth.co.in
- 13. http://www.automationstudio.com/
- 14. http://www.howstuffworks.com/search.php?terms=hydraulics
- 15. http://hyperphysics.phy-astr.gsu.edu/hbase/fluid.html#flucon
- 16. http://www.youtube.com/watch?v=FVR7AC8ExIM
- 17. http://www.youtube.com/watch?v=iOXRoYHdCV0
- 18. http://www.youtube.com/watch?v=qDinpuq4T0U
- 19. http://www.youtube.com/watch?v=xxoAm3X4iw0
- 20. www.festo.com
- 21. www.boschrexroth.co.in
- 22. www.nptel.iitm.ac.in
- 23.http://www.howstuffworks.com/search.php?terms=pneumatics

9. SEE Scheme of Evaluation

	E Scheme of Ev		
SL.	CO	Particulars/Dimension	Marks
No.			
1	01	One Experimental Question on case related to Application of Bernoulli's theorem (Venturimeter/Orifice/Pitot tube) (Group of 5 Students) • Writing observations and Tabular column 10 Marks • Writing Equations required With all notations15 Marks • Conduction of Experiment 10 Marks • Calculation and Result 15 Marks OR One Experimental Question on Channels/Pipes (Group of 5 Students) • Writing observations and Tabular column 10 Marks • Writing Equations required With all notations1 5 Marks • Conduction of Experiment 10 Marks • Calculation and Result 15 Marks	50
2	03,04	One Skill based Question to Design a Pneumatic Circuit for the given case (Individual Experiment)	30

Duration :180 Min

		 Writing Circuit Diagram with all components-20 marks Building Circuit on the Kit and Result -10 marks 	
3	CO1,CO2,CO3,CO4	Viva voce	20
	Total Marks		100

10 Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	Bench mounted Test Rig for Venturi meter		01
02	Bench mounted Test Rig for Notches		01
03	Bench mounted Test Rig for Friction through pipes		01
04	Centrifugal Pumps FOR Maintaines and Servicing	Used one	02
05	Mano block Pumps FOR Maintenance and Servicing	do	02
06	Submersible Pumps FOR Maintenance and Servicing	do	02
07	Pneumatics Trainer Kit with all standard accessories.	Standard size	
08	Compressor for Pneumatics Trainer Kit	6 Bar pressure Single phase 50 Hz	01
09	Hose pipes for Pneumatics Trainer Kit		
10	Bench mounted Test Rig for Pelton wheel	Standard size	01

ಮೂರನೇ ಸೆಮಿಸ್ಟರ್

ಕನ್ನಡ ಬಲ್ಲ ಡಿಪ್ಲೋಮಾ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ನಿಗದಿಪಡಿಸಿದ ಪಠ್ಯಕ್ರಮ

(ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ, ಸಂಸ್ಕೃತಿ ಮತ್ತು ಪರಂಪರೆ ಕುರಿತು)

Course Code	20KA31T	Semester : III	Course Group - AU
Course Title	ಸಾಹಿತ್ಯ ಸಿಂಚನ - 2	Category : Audit	Lecture Course
No. of Credits	2	Type of Course	CIE Marks : 50
Total Contact Hours	02 Hrs Per Week 26 Hrs Per Semester	Prerequisites Teaching Scheme (L:T:P)= 2:0:0	SEE Marks : Nil

ಸಾಹಿತ್ಯ ಸಿಂಚನ – 2 ಪಠ್ಯಕ್ರಮ - 20KA31T

26 ಗಂಟೆಗಳು

ಪಠ್ಯಕ್ರಮದ ಪರಿವಿಡಿ	ಬೋಧನಾ ಅವಧಿ
 ಹೊಸಗನ್ನಡ ಸಾಹಿತ್ಯ ಚರಿತ್ರೆಯ ಪ್ರಭಾವಗಳು ಮತ್ತು ಪ್ರೇರಣೆಗಳು 	01 ಗಂಟೆ
2. ಹೊಸಗನ್ನಡ ಕಾವ್ಯದ ಪ್ರಕಾರಗಳು -	02 ಗಂಟೆ
 ನವೋದಯ ಸಾಹಿತ್ಯ - ಲಕ್ಷಣಗಳು ಮತ್ತು ಪ್ರೇರಣೆ, ಪ್ರಮುಖ ಕವಿಗಳು ಮತ್ತು ಸಾಹಿತ್ಯದ ಕೊಡುಗೆಗಳು. ನವ್ಯ ಸಾಹಿತ್ಯ - ಲಕ್ಷಣಗಳು ಮತ್ತು ಪ್ರೇರಣೆ, ಪ್ರಮುಖ ಕವಿಗಳು ಮತ್ತು ಸಾಹಿತ್ಯದ ಕೊಡುಗೆಗಳು. 	03 ಗಂಟೆ 03 ಗಂಟೆ
 ಬಂಡಾಯ ಮತ್ತು ಪ್ರಗತಿಪರ ಸಾಹಿತ್ಯ - ಲಕ್ಷಣಗಳು ಮತ್ತು ಪ್ರೇರಣೆ, ಪ್ರಮುಖ ಕವಿಗಳು ಮತ್ತು ಸಾಹಿತ್ಯದ ಕೊಡುಗೆಗಳು. ದಲಿತ ಸಾಹಿತ್ಯ, ಮಹಿಳಾ ಸಾಹಿತ್ಯ, ವಿಜ್ಞಾನ ಸಾಹಿತ್ಯ ಮತ್ತು ಇತ್ತೀಚಿನ ಪ್ರಚಲಿತ 	03 ಗಂಟೆ
ಕನ್ನಡ ಸಾಹಿತ್ಯ - ಲಕ್ಷಣಗಳು ಮತ್ತು ಪ್ರೇರಣೆ, ಪ್ರಮುಖ ಕವಿಗಳು ಮತ್ತು ಸಾಹಿತ್ಯದ ಕೊಡುಗೆಗಳು. 3. ವೈಚಾರಿಕತೆ ಕುರಿತಾದ ಲೇಖನ - ಜಿ ಎಸ್. ಶಿವರುದ್ರಪ್ಪ	03 ಗಂಟೆ 01 ಗಂಟೆ
4. ಕಥೆ - ನೇಮಿಚಂದ್ರ	01 ಗಂಟೆ
5. ಪ್ರವಾಸ ಕಥನ - ಹಿ.ಚಿ.ಬೋರಲಿಂಗಯ್ಯ ರವರ (ಕುಪ್ಪಳ್ಳಿ ಡೈರಿ ಪುಸ್ತಕದಿಂದ)	01 ಗಂಟೆ
6. ಪರಿಸರ, ವಿಜ್ಞಾನ ಮತ್ತು ತಂತ್ರಜ್ಞಾನ ಕುರಿತಾದ ಲೇಖನಗಳು	01 ಗಂಟೆ
7. ಪ್ರಬಂಧ - ಗೊರೂರು ರಾಮಸ್ವಾಮಿ ಅಯ್ಯಂಗಾರ	01 ಗಂಟೆ
8. ಪ್ರಚಲಿತ ವಿದ್ಯಮಾನಕ್ಕೆ ಸಂಬಂಧಿಸಿದ ಲೇಖನ - "ಪೇರು ಮಾರುಕಟ್ಟೆ ಮತ್ತು ಹಣಕಾಸು ನಿರ್ವಹಣೆ" ಕುರಿತಂತೆ	01 ಗಂಟೆ
9. ಕರ್ನಾಟಕ ಏಕೀಕರಣ ಚಳುವಳಿ - ಪ್ರೊ. ಜಿ. ವೆಂಕಟಸುಬ್ಬಯ್ಯ	01 ಗಂಟೆ
10. ಕನ್ನಡ ಸಿನಿಮಾರಂಗ ಬೆಳೆದು ಬಂದ ದಾರಿ ಮತ್ತು ನಾಡು-ನುಡಿ ಹಾಗೂ ನಾಡಿನ ಸಂಸ್ಕೃತಿಯ ಮೇಲೆ ಬೀರಿದ ಪ್ರಭಾವಗಳು	01 ಗಂಟೆ
11. ಕನ್ನಡದ ಸಾಮಾಜಿಕ ಉಪಭಾಪೆಗಳು (ಭಾಪಾ ಪ್ರಭೇದಗಳು)	01 ಗಂಟೆ
12. ಆಧುನಿಕ ಕನ್ನಡ ಸಾಹಿತ್ಯ ಚರಿತ್ರೆಯ ಒಂದು ಅವಲೋಕನ	02 ಗಂಟೆ
ಒಟ್ಟು ಬೋಧನಾ ಅವಧಿ 26 ಗಂಟೆಗಳು	26 ಗಂಟೆ

ಕನ್ನಡ ಬಾರದ / ಕನ್ನಡೇತರ ಡಿಪ್ಲೋಮಾ ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಕನ್ನಡ ಕಲಿಸಲು ನಿಗದಿಪಡಿಸಿದ ಪಠ್ಯಕ್ರಮ

Course Code	20KA31T	Semester : III	Course Group - AU
Course Title	ಬಳಕೆ ಕನ್ನಡ - 2	Category : Audit	Lecture Course
No. of Credits	2	Type of Course	CIE Marks : 50
Total Contact Hours	2 Hrs Per Week	Prerequisites Teaching	SEE Marks : Nil
	26Hrs Per Semester	Scheme (L:T:P)= 2:0:0	

ಬಳಕೆ ಕನ್ನಡ – 2 ಪಠ್ಯಕ್ರಮ - 20KA31T

Table of Contents (ಪರಿವಿಡಿ)

26 ಗಂಟೆಗಳು

David 1	Teaching Hour			
Part - 1	Teaching flour			
Necessity of learning a local language (Continuation).				
Tips to learn the language with easy methods (Continuation).				
Easy learning of a Kannada Language: A few tips (Continuation).				
Hints for correct and polite conversation (Continuation).	01 Hour			
Instructions to Teachers for Listening and Speaking Activities (Continuation).				
Instructions to Teachers for Reading and Writing Activities (Continuation).				
Part – II				
Key to Transcription for Correct Pronunciation of Kannada Language (Continuation).	02 Hour			
Instructions to Teachers to teach Kannada Language (Continuation).				
Part – III Lessons to teach Kannada Language	-			
(Speaking, Listening, Reading and Writing Activities with Explanation	1)			
Lesson - 1 Personal Pronouns, Possessive Forms, Interrogative words - Part II	02 Hour			
Lesson – 2 Permission, Commands, encouraging and Urging words (Imperative words and sentences) – Part II	02 Hour			
Lesson - 3 Comparative, Relationship, Identification and Negation Words - Part II	02 Hour			
Lesson - 4 Different types of forms of Tense (Use and Usage of Tense in Kannada) - Part II	02 Hour			
Lesson - 5 Kannada Helping Verbs in Conversation (Use and Usage of Verbs) - Part II	02 Hour			
Lesson - 6 Formation of Past, Future and Present Tense Sentences with Changing Verb Forms	02 Hour			
Lesson – 7 Karnataka State and General Information about the State	02 Hour			
Lesson – 8 Kannada Language and Literature	02 Hour			
Lesson – 9 Do's and Don'ts in Learning a Language	02 Hour			
PART - IV Reading and writing Practice of Kannada Language	2			
Lesson - 10 Kannada Language Script Part - 1	02 Hour			
Lesson - 11 Kannada Language Script Part - II (Continuation)	02 Hour			
Lesson – 12 Kannada Vocabulary List : ಸಂಭಾಷಣೆಯಲ್ಲಿ ದಿನೋಪಯೋಗಿ ಕನ್ನಡ	01 Hour			
ಪದಗಳು - Kannada Words in Conversation (Continuation).				
Total Teaching Hours				

ಸಾಹಿತ್ಯ ಸಿಂಚನ ಭಾಗ - II ಮತ್ತು ಬಳಕೆ ಕನ್ನಡ ಭಾಗ - II ಈ ಎರಡು ಪಠ್ಯಕ್ರಮಗಳಿಗೆ CIE - ನಿರಂತರ ಆಂತರಿಕ ಮೌಲ್ಯಮಾಪನದ ಮಾರ್ಗಸೂಚಿಗಳು :

(Course Assessment and Evaluation Chart - CIE only)

Sl. No	Assessment	Туре	Time frame in semester	Duration In minutes	Max marks	Conversion
1.	CIE- Assessment - 1	Written Test - 1	At the end of 3 rd week	80	30	Average of three written tests: 1, 2 & 3 for 30 Marks
2.	CIE- Assessment - 2	Written Test - 2	At the end of 7 th week	80	30	
3	CIE- Assessment - 3	Written Test - 3	At the end of 13 th week	80	30	
4.	CIE- Assessment - 4	MCQ/Quiz	At the end of 5 th week	60	20	Average of three
5	CIE- Assessment - 5	Open Book Test	At the end of 9 th week	60	20	Assessment tests: 4,5 & 6 for 20 Marks
6	CIE- Assessment - 6	Work book Consolidation & Activities	At the end of 11 th week	60 (Work book Submission)	20	
Total CIE – Continuous Internal Evaluation Assessment Marks					50	
Total Marks						50

ಸೂಚನೆ: 1.CIE - ನಿರಂತರ ಆಂತರಿಕ ಮೌಲ್ಯಮಾಪನದ 1, 2 ಮತ್ತು 3 ರ ಕಿರು ಪರೀಕ್ಷೆಗಳನ್ನು ಮತ್ತು ಮೌಲ್ಯಮಾಪನದ 4, 5 ಮತ್ತು 6 ರ ಪರೀಕ್ಷೆಗಳನ್ನು ಪ್ರತ್ಯೇಕ ಬ್ಲೂಬುಕ್ ಪುಸ್ತಕದಲ್ಲಿ ವಿದ್ಯಾರ್ಥಿಗಳು ಬರೆಯಬೇಕು.

^{2.}ಸೆಮಿಸ್ಟರ್ ಅಂತ್ಯದಲ್ಲಿ ವಿದ್ಯಾರ್ಥಿಗಳು, ತರಗತಿ ಕನ್ನಡ ಭಾಪಾ ಶಿಕ್ಷಕರಿಂದ ಮತ್ತು ವಿಭಾಗಾಧಿಕಾರಿ ಗಳಿಂದ ದೃಢೀಕರಣಗೊಂಡ ಕಾರ್ಯಪಠ್ಯಪುಸ್ತಕವನ್ನು (Work Book) ಮೌಲ್ಯಮಾಪನ ಭಾಗ-CIE- Assessment – 6 ರ ಪರೀಕ್ಷೆಯ ನಂತರ ಆಯಾ ವಿಭಾಗಕ್ಕೆ ಸಲ್ಲಿಸಬೇಕು.