

Curriculum Structure

IV Semester Scheme of Studies- Diploma in Mechanical Engineering

	/ /			Н	ours per w	eek	'n		CI Mar		SE Mar			ing			
Sl. No.	Course Category / Teaching Department	Course Code	Course Name	L	Т	P	Total contact hrs /week	Credits	Max	Min	Max	Min	Total Marks	Min Marks for Passing (including CIE marks)	Assigned Grade	Grade Point	SGPA and CGPA
					Integra	ted Co	urses										
1	PC/ME	20ME41P	Operations Management	3	1	4	8	6	60	24	40	16	100	40			-
2	PC/ME	20ME42P	CNC Programming and Machining	3	1	4	8	6	60	24	40	16	100	40			CGPA
3	PC/ME	20ME43P	Product Design and Development	3	1	4	8	6	60	24	40	16	100	40			8
4	PC/ME	20ME44P	Elements of Industrial Automation	3	1	4	8	6	60	24	40	16	100	40			Both SGPA
				1	Aud	it Cour	se		•								Bo
5	AU/ME	20ME45T	Indian Constitution	2	0	0	2	2	50	20	-	-	50	20			
			Total	14	4	16	34	26	290	116	160	64	450	180			

^{*}PC: Programme Core:: AU-Audit Course:: L: Lecture:: T: Tutorial:: P: Practice

4TH **SEMESTER**

Programme	Mechanical Engineering	Semester	IV
Course Code	20ME41P	Type of Course	Programme Core
Course Name	Operations Management	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale: The success of any organisation not only depends on quality of its products and services but also depends on the people within it. Thus, an operational manager has to play a prominent role in an organisation with human capital and machines. Therefore, managerial skills are essential for enhancing their employability and carrier growth. This course is therefore designed to provide basic concepts in operations management, forecasting techniques, capacity planning, aggregate planning, master production schedule, quality, and inventory and supply chain management for effective utilisation of resources and competitive advantage through operational excellence

2. Course Outcomes: On Completion of course, the student will be able to:

CO-01	Prepare a production capacity utilization plan based on demand forecast and available production capacity for a given product.
CO-02	Prepare a master production plan based on a production capacity utilization plan and a material management plan for a given product.
CO-03	Prepare a process plan using time study, motion study and other appropriate methods to ensure process efficiency.
CO-04	Prepare a quality assurance plan based on a given quality model which is suitable for either a product or a service organisation.

			Lecture (Knowledge)	Tutorial (Activity)	Practice (Skill)	
Week	СО	PO*	3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)	
1	01	01	Introduction to Operation Management 1. Introduction to Operation Management - Operation Functions 2. Evolutions and Historical Events in Operational Management 3. Productivity and Competitiveness, Strategy and operation	Ref Table 1	Virtual Tour Organization (You tube)Problems on Productivity	
2	01	01	DEMAND FORECASTING 1.Demand Forecasting- Demand Behavior-Trend Cycle - Seasonal Background - Steps in Forecasting Process 2. Short range and Long Range Forecast 3. Qualitative Forecast methods	Ref Table 1	• Qualitative Forecast - Delphi method, Market Research method • Quantitative Forecast - Time series Method a) Moving average (Naive forecast, Simple moving	

1. Quantitative Forecast methods 2. Seasonal Adjustments 3. Forecast Accuracy CAPACITY AND AGGREGATE PLANNING 1. Need for Capacity Planning – Capacity expansion Strategies – Capacity planning Models. 2. Aggregate planning- Methods 3. Master production Schedule PROCESS PLANNING 1. Make or Buy Decision Outsourcing- Factors for Outsourcing decision- Process Selection – Batch, Mass ,Continuous Components of e-manufacturing 1. Motion Study 2. Man- Machine chart Ref Table 1 Ref Table 1	moving Average) Problems on b) Exponential smoothing Problems on • Capacity Planning, • Aggregate planning • Master production Schedule
3 01 01 2. Seasonal Adjustments 3. Forecast Accuracy CAPACITY AND AGGREGATE PLANNING 1. Need for Capacity Planning – Capacity expansion Strategies – Capacity planning Models. 2. Aggregate planning- Methods 3. Master production Schedule PROCESS PLANNING 1. Make or Buy Decision Outsourcing- Factors for Outsourcing decision- Process Selection – Batch, Mass, Continuous Components of e-manufacturing 1.Motion Study 2. Man- Machine chart Ref Table 1 Ref Table 1	b) Exponential smoothing Problems on Capacity Planning, Aggregate planning Master production
3. Forecast Accuracy CAPACITY AND AGGREGATE PLANNING 1. Need for Capacity Planning – Capacity expansion Strategies – Capacity planning Models. 2. Aggregate planning-Methods 3. Master production Schedule PROCESS PLANNING 1. Make or Buy Decision Outsourcing-Factors for Outsourcing decision- Process Selection – Batch, Mass, Continuous Components of e-manufacturing 1. Motion Study 2. Man- Machine chart Ref Table 1 Ref Table 1	Problems on • Capacity Planning, • Aggregate planning • Master production
CAPACITY AND AGGREGATE PLANNING 1. Need for Capacity Planning – Capacity expansion Strategies – Capacity planning Models. 2. Aggregate planning- Methods 3. Master production Schedule PROCESS PLANNING 1. Make or Buy Decision Outsourcing- Factors for Outsourcing decision- Process Selection – Batch, Mass, Continuous Components of e-manufacturing 1. Motion Study 2. Man- Machine chart Ref Table 1 Ref Table 1	Capacity Planning,Aggregate planningMaster production
PLANNING 1. Need for Capacity Planning - Capacity expansion Strategies - Capacity planning Models. 2. Aggregate planning- Methods 3. Master production Schedule	Capacity Planning,Aggregate planningMaster production
1. Need for Capacity Planning – Capacity expansion Strategies – Capacity planning Models. 2. Aggregate planning- Methods 3. Master production Schedule PROCESS PLANNING 1. Make or Buy Decision Outsourcing- Factors for Outsourcing decision- Process Selection – Batch, Mass, Continuous Components of e-manufacturing 1. Motion Study 2. Man- Machine chart Ref Table 1 Ref Table 1	Aggregate planningMaster production
FROCESS PLANNING 1. Make or Buy Decision Outsourcing- Factors for Outsourcing decision- Process Selection - Batch, Mass, Continuous Components of e-manufacturing 1. Motion Study 2. Man- Machine chart Ref Table 1 Ref Table 1	<u>. </u>
5 01 01 Outsourcing- Factors for Outsourcing decision- Process Selection – Batch, Mass, Continuous Components of e-manufacturing 1.Motion Study 2. Man- Machine chart Ref Table 1 Ref Table 1	•Virtual Tour on Batch,
1.Motion Study 2. Man- Machine chart Ref Table 1	Mass and continuous Process • Develop an Operation Sheet indicating Process Plan and Process flow chart for a given
6 03 01 2. Man- Machine chart Ref Table 1	component.
6 03 01 Ref Table 1	•Develop Job Process chart with Process
Ref Table 1	Symbols for a given Process.
	 Develop Man- Machine chart for a given Process. Case study on Time Study Principles for a given process.
INVENTORY MANAGEMENT 1. Elements of Inventory Management- Inventory Costs-	Problems on
Carrying, Ordering and Shortage Costs 2 Inventory Control Systems	•ABC Classification
7 02 01 Continuous Inventory System (Fixed-Order-Quantity System) Periodic Inventory System (Fixed- Time-Period System)	System •Economic Order Quantity Models •The Production Quantity Model
3. Concept on ABC Classification, Economic Order Quantity Models, Production Quantity Model	Model
8 02 01,02 1. Order Quantity for A Periodic Inventory System Order Quantity with Variable Demand 2. JIT -Pull System 3 Kanban's System	Case study on JIT (Eg:Toyoto Production System)
Supply Chain Management 1.Supply Chains	
9 02 01 Supply Chains for Service Providers 2. Value Chains The Management of Supply Chains 3. Vendor Selection- Vendor	Study on

Total i	n hoı	ırs	39	13	52
			Six Sigma The Breakthrough Strategy: DMAIC		
13	04 04,05,07		1. TQM and QMS The Focus of Quality Management— Customers 2. Quality Management in The Supply Chain The Role of Employees in Quality Improvement Kaizen and Continuous Improvement Quality Circles 3. Process Improvement Teams		Practice on The Deming Wheel (PDCA Cycle) •Process Control Charts •Statistical Quality Control •ISO 9000 •ISO14000
12	04	01,04,07	QUALITY MANAGEMENT 1. Quality from The Customer's Perspective Dimensions of Quality for Manufactured Products Dimensions of Quality for Services 2. Quality from The Producer's Perspective A Final Perspective On Quality The Cost of Quality The Cost of Achieving Good Quality 3. The Cost of Poor Quality The Quality—Productivity Ratio Quality Management System	Study the latest technological changes in this course and present the impact of these changes on industry	Practice on Quality Tools • Process Flowcharts • 5 Whys, Cause-And-Effect Diagrams • Check sheets And Histograms • Pareto Analysis • Scatter Diagrams
11	02	01,07	1.Material Requirements Planning (MRP) Enterprise Resource Planning (ERP), 2. Warehouse Management Systems Collaborative Logistics, Distribution Outsourcing 3.Finance/Accounting- Sales/Marketing- Production/Materials Management- Human Resources	rce Planning (ERP), nagement Systems istics, Distribution uting- rials Management-	Case study on Procurement- Outsourcing. •E-Procurement •E-Market places •ERP MODULES
10	02	01	1.Supply Chain Uncertainty and Inventory 2.E-Business, Electronic Data Interchange 3.Supply Chain Integration-Collaborative Planning, Forecasting, And Replenishment	Ref Table 1	 Study on Information Technology: Supply Chain Enabler Bar Codes Radio Frequency Identification Build-To-Order (BTO)
			evaluation and Vendor Development, Negotiations		

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Co-Ordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl.No.	Suggestive Activities for Tutorials										
	Below are mont	hly sales of l	ight bulbs fr	om the	lighting	store.					
		MONTH	Jan F	eb	March	April	May	June]		
	_ ,	SALES			80	40	360	June			
	Forecast sales	.00	00	140	300	_	for June using				
01	the following Naive method										
	Naive methodThree- month simple moving average										
	 Three-month weighted moving average using weights of 0 .5, 0.3 and 0.2 										
		_	ing using an	_	_	_					
	•										
	Delph Manufacti								rom one of two hain performance		
	of the two suppl	_				_			_		
	work-in-process										
	suppliers	•	O	J	•			J			
	Items			Suppl	lier 1		Suj	oplier 2			
02		of goods sol	d		360,000			800,000			
		naterials		270,0				0,000			
		-In-Progres	S	62,00				0,000			
		ned goods		33,00				0,000			
	Each company operates 52 weeks per year. Determine which supplier has the best supply chain performance according to inventory turns and weeks of supply. What other factors would the										
	company likely t	_	-				. wnat o	otner fac	tors would the		
							as resno	nsihility	y for maintaining		
	The maintenance department for a small manufacturing firm has responsibility for maintaining an inventory of spare parts for the machinery it services. The parts inventory, unit cost, and										
	annual usage are as follows										
			IImia								
		Part	Unit Cost(Rs)	A	nnual U	sage					
		1	100	9	0						
03		2	350	4							
		3	30		30						
		4	20		80						
		5	320	5	0						
			•								
			_					_			
	The department	_		•				ng to the	ABC system to		
	determine which	n stocks of p	arts should	most clo	osely be	monito	red		<u>-</u>		
	determine which The design capa	n stocks of p city for engi	arts should ne repair in	most clo	osely be npany is	monito 80 truc	red ks/day	. The effe	ective capacity is		
04	determine which The design capa 40 engines/day	n stocks of p city for engi and the actu	arts should ne repair in Ial output is	most clo our com 36 engi	osely be npany is nes/day	monito 80 truc 7. Calcul	red ks/day ate the	. The effe	ective capacity is on and efficiency		
04	determine which The design capa	n stocks of p city for engi and the actu	arts should ne repair in Ial output is	most clo our com 36 engi	osely be npany is nes/day	monito 80 truc 7. Calcul	red ks/day ate the	. The effe	ective capacity is on and efficiency		
04	determine which The design capa 40 engines/day of the operation output?	n stocks of p city for engi and the actu . If the effici	earts should ne repair in aal output is ency for nex	most clo our com 36 engin t month	osely be npany is nes/day is expe	monito 80 truc 7. Calcul cted to l	red ks/day ate the pe 82%	. The effe utilizatio , what is	ective capacity is on and efficiency the expected		
04	determine which The design capa 40 engines/day of the operation output?	n stocks of p city for engi and the actu . If the effici uses are ins	ne repair in all output is ency for nex	most clo our com 36 engin t month	osely be npany is nes/day is expe	monito 80 truc 7. Calcula cted to l	red ks/day ate the be 82%	. The effect that is the contract of the contr	ective capacity is on and efficiency the expected		
04	determine which The design capa 40 engines/day of the operation output? County school by	n stocks of p city for engi and the actu . If the effici uses are ins	ne repair in all output is ency for nex pected every nd, 22 buses	most clo our com 36 engin t month month s had dir	npany is nes/day nes/day is expe for "def	monito 80 truc 7. Calcul cted to l fects." Ir	red ks/day ate the pe 82% a a rece were 1	. The effect that is the cases of the case of the ca	ective capacity is on and efficiency the expected aly inspection, 27 of exterior		
04	determine which The design capa 40 engines/day of the operation output? County school by worn or torn seas scratches and che had trouble star	n stocks of points for enging and the actual of the efficions of the efficions of the efficions of the efficions of the efficients were found in the efficients of the efficient of the e	parts should ne repair in nal output is ency for nex pected every nd, 22 buses t, there were e not running	most clo our com 36 engint t month month s had dir 8 cracker g smootl	npany is nes/day is expe for "def cty floor red or br hly, and	monito 80 truc 7. Calcul- cted to l fects." Ir s, there roken w 2 buses	red ks/day ate the be 82% a a rece were 1 indows s had fa	. The effect that is the cases of the engulty brake.	ective capacity is on and efficiency the expected ally inspection, 27 of exterior ines on 4 buses sees. Develop a		
	determine which The design capa 40 engines/day of the operation output? County school be worn or torn seas scratches and che had trouble star Pareto chart for	n stocks of p city for engi and the actu . If the effici uses are ins ats were fou tipped paint ting or were the bus insp	parts should ne repair in lal output is ency for nex pected every nd, 22 buses t, there were e not running pections and	most clo our com 36 enging t month month month s had dir 8 crack g smooth indicate	npany is nes/day nes/day is expe for "def rty floor red or br hly, and e the mo	monito 80 truc 7. Calcul cted to l fects." Ir s, there roken w 2 buses ost signi	red ks/day ate the be 82% a a rece were 1 indows a had far ficant q	. The effoutilization, what is not month 4 cases on the engulty brak uality-po	ective capacity is on and efficiency the expected ally inspection, 27 of exterior ines on 4 buses sees. Develop a roblem		
	determine which The design capa 40 engines/day of the operation output? County school by worn or torn sea scratches and ch had trouble star Pareto chart for categories. What	n stocks of points for enging and the actual and the actual are insufficies. If the efficies were found in the bus insufficies the bus insufficies the state of t	parts should ne repair in all output is ency for nex pected every nd, 22 buses there were not running pections and all you about	most clo our com 36 enging t month month month s had dir 8 cracker g smooth indicater t the lim	npany is nes/day is expe for "def rty floor ed or br hly, and e the mo	monito 80 truc 7. Calcul cted to l fects." Ir rs, there roken w 2 buses ost signi	red ks/day ate the be 82% a a rece were 1 indows a had far ficant q	. The effoutilization, what is not month 4 cases on the engulty brak uality-po	ective capacity is on and efficiency the expected ally inspection, 27 of exterior ines on 4 buses sees. Develop a		
05	determine which The design capa 40 engines/day of the operation output? County school be worn or torn seas scratches and che had trouble star Pareto chart for categories. What might these limi	n stocks of points for enging and the actual and the actual are insured are insured paints were found for were the bus insufficial actions be outstoned be only to the bus insufficial actions be outstoned are sured ar	parts should ne repair in all output is ency for nex pected every nd, 22 buses there were not running pections and ell you about vercome in	most clo our com 36 enging t month month s had dir 8 crack g smooth indicate t the lim	npany is nes/day is expe for "def rty floor ed or br hly, and e the mo	monito 80 truc 7. Calcul Cted to l fects." Ir s, there oken w 2 buses ost signi s of appl	red ks/day ate the be 82% a a rece were 1 indows had fa ficant q ying Pa	. The effect that is the cases of the engulty brake uality-presented	ective capacity is on and efficiency the expected ally inspection, 27 of exterior ines on 4 buses sees. Develop a roblem		
05	determine which The design capa 40 engines/day of the operation output? County school be worn or torn seas scratches and che had trouble star Pareto chart for categories. What might these limi Study and prepar	n stocks of points for enging and the actual states are insulated when the states were found in the bus insulated the bus insulated the bus insulated the states are port.	parts should ne repair in all output is ency for nex pected every nd, 22 buses there were not running pections and ell you about vercome in lon Inventory	most clo our com 36 enging t month month s had dir 8 cracked g smooth indicated t the lim Pareto com	osely be appany is nes/day is expe for "defecty floor bred or bred hly, and the the monitations chart anagement i	monito 80 truc 7. Calcul cted to l fects." Ir s, there roken w 2 buses ost signi s of appl alysis n A Sup	red ks/day ate the be 82% a a rece were 1 indows had fa ficant q ying Pa	. The effect that is the cases of the engulty brake uality-presented	ective capacity is on and efficiency the expected ally inspection, 27 of exterior ines on 4 buses sees. Develop a roblem		
05	determine which The design capa 40 engines/day of the operation output? County school be worn or torn seas scratches and che had trouble star Pareto chart for categories. What might these limi	n stocks of points for enging and the actual sees are insulated when the busing or were the busing the business the busi	parts should ne repair in all output is ency for nex pected every nd, 22 buses there were not running pections and ell you about vercome in lon Inventory Managemen	most clo our com 36 enging t month month month s had dir 8 cracker g smooth indicater t the lim Pareto commanag t in Ama	for "def for "def for "def for gloor ed or br hly, and e the mo hitations hart ana gement i	monito 80 truc 7. Calcul rected to l fects." Ir rs, there roken w 2 buses ost signi r of appl alysis n A Sup kart etc	red rks/day ate the be 82% a a rece were 1 indows s had fat ficant q ying Pa er Baza	. The effect that is the engulty brake uality-preceden	ective capacity is on and efficiency the expected ally inspection, 27 of exterior ines on 4 buses tes. Develop a roblem rt analysis? How		

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion			
1.	CIE-1 Written Test	5	80	30	Average of three			
2.	CIE-2 Written Test	9	80	30	tests			
3	CIE-3 Written Test	13	80	30	30			
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two			
5	CIE-5 Skill Test-Practice	12	180	100	skill test reduced to 20			
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10			
	Total CIE Marks							
	Semester End Examination (Practice)	180	100	40			
		_	_	Total Marks	100			

5. Format for CIE written Test

Course Name		Operation Management	Test	I/II/III	Sem	IV		
Course Code		20ME41P	Duration	80 Min	Marks	30		
Note: Ans	Note: Answer any one full question from each section. Each full question carries 10 marks.							
Section	Assessment Questions			Cognitive Levels(R/U/A)	Course Outcome	Marks		
_	1							
1	2							
II	3							
11	4							
111	5		·					
III	6	·						

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5. (a) For CIE Skill Test -4

SL.	СО	Particulars/Dimension	Marks
No.			
1	01	One Question- Problems/Case study on Demand forecasting/Master	45
		Scheduling/Capacity Planning	
2	01,03	Based on the given Case Study, Prepare a Job Process chart with Process	45
		Symbols/Develop a Man- Machine chart	
3	01,03	Portfolio evaluation based on the average of all Practice Sessions (1-6 Weeks)	10
Total	Marks		100

5. (b) For CIE Skill Test -5

SL.	СО	Particulars/Dimension	Marks
No.			
1	02	One Question on Inventory Management and Supply Chain Management (JIT/Kanban System /E- Business/)	45
2	04	For the given case study, Prepare the Cost of achieving good Quality using any quality Tools	45
3	02,04	Portfolio evaluation based on the average of all Practice Sessions (7-12 weeks)	10
Total	Marks		100

Duration: 240Min

Duration: 240 Min

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
				Average	e Marks= (8+6	5+2+2)/4=4.5	5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Production and Operations Management - Creating Value along the Supply Chain By Russel and
1	Taylor , Wiley Publications , 7 Edition
2	Modern Production and Operation Management By Buffa and Sarin, Wiley Publications, 8 edition
3	Production and Operations Management By Chary, Tata Mc Graw Hill Publications
4	Production and Operations Management- Concepts, Models and Behaviour By Adam and Ebert,
4	Prentice Hall Publications

8. LIST OF SOFTWARES/ LEARNING WEBSITES:

- 1. <u>www.youtube.com/watch?v=SF53ZZsP4ik</u>
- 2. <u>www.youtube.com/watch?v=iPZlQ3Zx5zc</u>

9. SEE Scheme of Evaluation

SL.	СО	Particulars/Dimension	Marks
No.		,	
1	01,02,03	One Question- Problems/Case study on Demand forecasting/Master Scheduling/Capacity Planning OR Based on the given Case Study, Prepare a Job Process chart with Process Symbols/Develop a Man- Machine chart	40
2	03,04	One Theory Question on Inventory Management and Supply Chain Management (JIT/ Kanban System /E- Business/) OR For the given case study, Prepare the Cost of achieving good Quality using any quality Tools	40
3	01,0203,04	Viva voce	20
	Total Marks	S	100

10. Tools/ Equipment/ Software's Required

1.ERP Software

Duration: 180 Min

Programme	Mechanical Engineering	Semester	IV
Course Code	20ME42P	Type of Course	Programme Core
Course Name	CNC Programming and Machining	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale: In recent years the manufacturing environment has undergone dramatic change. For achieving market goals, it is essential to produce quality parts in less time. Evolution of information technology, variety manufacturing concepts with zero lead time demand and quality consciousness have supported fast adaption of computerized numerical control (CNC) machines. As in human beings' mental ability is becoming more important than physical ability to do the manual work, similarly CNC programming in the same way has more importance along with selection and use of CNC tooling. In this course therefore an attempt has been made to develop skills required for programming, tooling etc for CNC machine. CNC machines normally are not limited to machine tools only but realm of CNC has widened in almost all areas of manufacturing, processes and support activities. It is therefore very important for Diploma mechanical engineers to master CNC technology.

2. Course Outcomes/Skill Sets: At the end of this course, student will be able to:

CO-01	Identify various components of a CNC machine and list the use of those components for any given CNC operation.
CO-02	Study a given production drawing and list the right tools needed to produce a product as per the drawing.
CO-03	Write a CNC turning and milling program for a given production drawing, simulate the program and execute the program in production mode.
CO-04	Develop and/or import a 3-D model of a given component drawing, generate the CNC programming codes using CAM software and execute the program in production mode.

			Lecture (Knowledge)	Tutorial (Activity)	Practice (Skill)
Week	CO	PO*	3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)
1	01	01	1.Introduction to CNC Machines- Advantages of CNC machines over Conventional machines 2.Explain the Construction features of CNC machine- Machine Structure, bed, spindle motor and drive, axes motor and ball screws using Multimedia 3. Explain Guide ways, LM guides, console, control switches, coolant system, hydraulic system using Multimedia	Ref Table 1	1. Demonstrate Personal, Conduct, Shop etiquettes and general safety practices in CNC machine Comply safe handling of CNC machines, tools and Equipment. 2. Demonstration of CNC machine and its parts - bed, spindle motor and drive, axes motor and ball screws, guide ways, LM

	1	1	1	I	T
					guides, console, control switches, coolant system, hydraulic system, 3. Identification of safety switches, machine over travel limits and emergency stop. Machine starting & operating in Reference Point, JOG and Incremental Modes
2	01,02	01	1.Explain Axis convention of CNC machine 2. Explain Cutting tool materials, cutting tool geometry – insert types, holder types, insert cutting edge geometry. 3. ISO nomenclature for turning tool holders, boring tool holders, indexable inserts Tool holders and inserts for radial grooving, face grooving, threading, drilling	Ref Table 1	1.Conduct a preliminary check of the readiness of the CNC machine viz., cleanliness of machine, referencing – zero return, 2.Functioning of lubrication, coolant level, correct working of sub-system
3	01,02	01,04	1.Explain Automatic tool exchanger using Multimedia 2. Explain the importance of Tool length compensation, Tool nose Radius compensation and Tool Wear compensation. 3. Explain Machine Zero and Work Zero	Ref Table 1	1.Perform Work and tool setting: - Job zero/work coordinate system and tool setup and live tool setup 2. CNC machining centre operation in various modes: JOG, EDIT, MDI, SINGLE BLOCK, AUTO 3. Setting the tool offsets, entry of tool nose radius and orientation in CNC console
4	03	01,04	1.Explain Programming sequence and format - Absolute and Incremental System 2.Explain G codes and M codes 3. Explain Linear interpolation and Circular Interpolation	Ref Table 1	1. Geometry Wear Correction. Geometry and wear offset correction in CNC Console 2. Program checking in dry run, single block modes
5.	03	01	1.Explain cutting Parameters – Feed, Speed and depth of cut w.r.t CNC machine as per Catalogue 2. Explain Canned Cycle, Mirroring and Subroutines	Ref Table 1	1.Learn various numerical keys, Address Keys, functional Keys of operational console
6.	03	01,04	Write the Part Program for Facing, Turning, Step turning and Taper turning (Write Program for 3 models and execute any one on the machine)	Ref Table 1	1.Input the Program into the Simulator and operate the Simulator 2.Transfer the simulated Program to machine

					3.Set the machine with necessary tools and Job 4. Execute the Program in Auto mode to
7.	03	01,04	Write the Part Program for Turning, Profile turning and Thread cutting (Write Program for 3 models and execute any one on the machine)	Ref Table 1	produce the Job. 1.Input the Program into the Simulator and operate the Simulator 2.Transfer the simulated Program to machine 3.Set the machine with necessary tools and Job 4.Execute the Program in Auto mode to produce the Job
8.	03	01,04	Write a CNC milling program for Pocket machining (Write Program for 3 models and execute any one on the machine)	Ref Table 1	1.Input the Program into the Simulator and operate the Simulator 2.Transfer the simulated Program to machine 3.Set the machine with necessary tools and Job 4.Execute the Program in Auto mode to produce the Job
9	03	01,04	Write a part program for drilling 4 holes in a plate Six holes along PCD on a circular plate	Ref Table 1	1.Input the Program into the Simulator and operate the Simulator 2.Transfer the simulated Program to machine 3.Set the machine with necessary tools and Job 4.Execute the Program in Auto mode to produce the Job
10.	03	01,04,07	Write a Program using Mirroring Write a Program using Subroutines	Ref Table 1	1.Input the Program into the Simulator and operate the Simulator 2.Transfer the simulated Program to machine 3.Set the machine with necessary tools and Job 4.Execute the Program in Auto mode to produce the Job

11	04	01,04,07	Generate the Part Program for Component requiring Turning, Step turning Profile turning and Thread cutting by using CAM software (Program for 3 models and execute any one on the machine)	Study the latest technological changes in this course and present the impact of these	1.Transfer the simulated Program to machine 2. Set the machine with necessary tools and Job 3. Execute the Program in Auto mode to produce the Job
12	04	01,04,07	Generate a CNC program for component having Pocket machining using CAM software (Program for 3 models and execute any one on the machine)		1. Transfer the simulated Program to machine 2. Set the machine with necessary tools and Job 3. Execute the Program in Auto mode to produce the Job
13			Demonstrate the manufacturing of following components on CNC machines using YouTube Videos 1. CNC Turning 2. Rollers 3. Spacers 4. Brackets Discuss and Prepare a Report on the videos Presented for each manufactured component	changes on industry	Demonstrate the manufacturing of following components on CNC machines using YouTube Videos 1. Spindles 2. Frames 3. Engine Block 4. Ball Bearings Discuss and Prepare a Report on the videos Presented for each manufactured component
Total i	n hours		39	13	52

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Co-Ordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl.No.	Suggestive Activities for Tutorials
01	Discuss the steps for choosing the Right CNC machine tool using various parameters like operator experience, Material to be cut, Part difficulty and complexity, LM guides, Control systems, Cost per part, Availability of space. www.hwaheonasia.com
02	Presentation on Macros and Parametric Programming in CNC by discussing basic macro skill- Macro capability, common features and applications- Macro structure www.thomasnet.com
03	Discuss and present a report on influence of coolant in CNC by explaining Purpose- delivery methods of coolants- Types of coolants- Health and safety issues- Properties- Recycling and disposal of cutting lubricants www. Industr.com
04	Each student has to Present minimum 5 CNC Programming on Machining involving Turning, Milling and Drilling. (Course coordinator has to ensure no repetition of the Programs)

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion			
1.	CIE-1 Written Test	5	80	30	Average of three			
2.	CIE-2 Written Test	9	80	30	tests			
3	CIE-3 Written Test	13	80	30	30			
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill			
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20l tests 20			
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10			
		60						
	Semester End Examination	n (Practice)	180	100	40			
	Total Marks							

5. Format for CIE written Test

Course Name		Operation Management	Test	I/II/III	Sem	IV
Course Code		20ME41P	Duration	80 Min	Marks	30
Note: Answ	ver a	any one full question from each section.	Each full qu	uestion carries 10	marks.	
Section		Assessment Questions		Cognitive Levels(R/U/A)	Course Outcome	Marks
,	1					
1	2					
11	3					
II	4					
III	5					
	6					

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5. (a) CIE Skill Test -4

SL. No.	СО	Particulars/Dimension	Marks
1	02,04	One Question on Writing CNC program For Turning Model ,Simulation and Preparation of the MODEL on CNC Machine • Writing CNC program—30 Marks • Editing the program—30 Marks • Simulation and Preparation of the MODEL on CNC Machine - 30 Marks	90
2	02,04	Portfolio evaluation based on the average of all Practice Sessions (1-6 Weeks)	10
Total	Marks		100

5. (b) CIE Skill Test-5

SL.	CO	Particulars/Dimension		
No.				

Duration: 240 Min

Duration: 240 Min

Tota	ıl Marks		100
3	02,03,04	Portfolio evaluation based on the average of all Practice Sessions (7-12 Weeks)	10
2	02,04	 One Question on Generating CNC Turning Program/Milling Program, Using CAM Software, Simulation and Preparation of the MODEL on CNC Machine. Preparation of Solid Model for a given Drawing using software - 25 marks Generate Turning Program/Milling Program, Using CAM Software - 05 Marks Interface with the CNC machine and produce the model -10 Marks 	40
1	02,03	One Question on Writing CNC program For Milling Model ,Simulation and Preparation of the MODEL on CNC Machine • Writing CNC program—25 Marks • Editing the Program—15 Marks • Simulation and Preparation of the MODEL on CNC Machine-10 Marks	50

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5						

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Automation, Production Systems, and Computer- Aided Manufacturing by Mikell P. Groover Prentice-Hall
1	International publication
2	CAD/CAM Principles and Applications P N Rao McGraw Hill Education
3	CNC Machines. Pabla B.S., Adithan M. New Age International, New Delhi, 2014(reprint)
4	Computer Numerical Control-Turning and Machining centers. Quesada Robert Prentice Hall 2014

8. LIST OF SOFTWARES/ LEARNING WEBSITES:

- 1.http://www.nptel.ac.in
- 2.<u>http://www.youtube.com/watch?v=M3eX2PKM1RI</u>
- 3.http://www.youtube.com/watch?v=EHQ4QIDqENI&list=PLBkqkLQO2nAt5MNLo
- 4.http://www.youtube.com/watch?v=hJFLcvtiNQ I
- 5.http://www.youtube.com/watch?v=BIM1AyxfYkw.
- 6.http://www.mtabindia.com
- 7. http://www.swansoftcncsimulator.com

9. SEE Scheme of Evaluation

SL.	СО	Particulars/Dimension	Marks
No.			

Duration: 180 Min

1	02,03	One Question on Writing CNC program For Turning Model ,Simulation and Preparation of the MODEL on CNC Machine • Writing CNC program—30 Marks • Simulation and Preparation of the MODEL on CNC Machine-20Marks OR One Question on Writing CNC program For Milling Model ,Simulation and Preparation of the MODEL on CNC Machine • Writing CNC program—30 Marks • Simulation and Preparation of the MODEL on CNC Machine-20 Marks	50
2	02,04	One Question on Preparing a Solid Model and Generating CNC Turning Program/Milling Program, Using CAM Software, • Preparation of Solid Model for a given Drawing using software – 20 marks • Generate CNC Turning Program/Milling Program, Using CAM Software - 10Marks	30
3	01,02,03,04	Viva voce	20
Total	l Marks		100

10. Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	CNC Turning Centre (Tutor or Productive)	Minimum diameter 25 mm, Length 120 mm with ATC. (Approximate)	01
02	CNC Milling Centre (Tutor or Productive) X axis travel - 225 mm, Y axis travel - 150 mm, Z axis travel - 115 mm, With ATC.(Approximate)	X axis travel - 225 mm, Y axis travel - 150 mm, Z axis travel - 115 mm, With ATC.(Approximate)	01
03	Simulation software likes: CNC Simulator Pro, Swansoft CNC, etc.		20 user
04	Latest version of CAD/CAM integration software like MASTER CAM, NX CAM OR EDGE CAM		20 user
05	Desk top computer	Latest configuration	20 no

Programme	Mechanical Engineering Diploma	Semester	IV
Course Code	20ME43P	Type of Course	Programme Core
Course Name	Product Design and Development	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale: Design department of industry is one of the major job areas for Diploma engineers. The fundamental knowledge of Strength of Materials, Engineering Materials, and Computer Aided Design and Drafting is essential to meet job requirement in this sector. To enable a student to work here, they should know how to design a simple machine element, usual procedures in development of product, fundamental knowledge in design of simple machine elements such as shafts, springs, couplings etc, codes, norms, standards and guidelines for selection of appropriate material. In addition to this, Diploma engineers are required to read and interpret the drawings. Therefore, it is essential that they have competency in preparing drawings of machine parts. This course aims at developing analytical abilities in the student to give solutions to simple engineering design problems using standard procedures. Hence this course has been introduced with the expectations that efforts will be made to provide appropriate learning experiences in the use of basic principles to the design solution for applied problems to develop the required skill and competencies.

2. Course Outcomes/Skill Sets: At the end of the Course, the student will be able to:

CO-01	Explain the key principles of product design considering Strength, Aesthetic and Ergonomic
CO-02	Design simple machine elements like shafts, springs, couplings and knuckle joints using standard data.
CO-03	Prepare CAD Part and Assembly drawings for couplings and knuckle joints based on designed parameter.
CO-04	Produce Component based on designed Parameters using 3- D Printing Techniques

			Lecture (Knowledge)	Tutorial (Activity)	Practice (Skill)
Week	CO	PO*	3 hours/week	1 hour/week	4 hours/week (2hours/batch twice in a week)
1	01	01	Product Development and Design: 1.Explain Product Development-Stages of Product Development-Need and Feasibility study 2.Explain Development of design-Selection of Materials and Process 3.Explain Protype –launching of product –Product life cycle	Ref Table 1	Discuss case studies of Product development by using Video
2	01	01	General consideration in design: Based on Functional requirement Effect on environment Life, Reliability, Safety	Ref Table 1	Case study

Principles of Standardization Assembly Feasibility Maintenance-Cost- Quantity Legal issues and Patents Aesthetic and Ergonomic factors Feasibility of Manufacturing Processes Aesthetic and Ergonomic consideration in Design: Explain Aesthetic considerations: Basic types of product forms, Designing for appearance, shape, Design features, Materials, Finishes, proportions, Symmetry Contrast etc. Morgan's color code. Frgonomic considerations: Relation between man, machine and environmental factors. Design of displays and controls. Torsion of Shaft: 1. Assumptions in Shear stress in a shaft subjected to torsion—Strength and Rigidity (Solid and Hollow shaft) 1. Assumptions in Shear stress in Shafts of Strength and Rigidity and Strength 1. Problems on Shafts subjected to only Shear based on Rigidity and Strength 1. Problems on Shaft subjected to only Shear based on Rigidity and Strength 1. Problems on Shaft subjected to only Shear based on Rigidity and Strength 1. Problems on Shaft subjected to only Shear based on Rigidity and Strength 1. Problems on Shaft subjected to only Shear based on Rigidity and Strength 1. Problems on Shaft subjected to only Shear based on Rigidity and Strength 1. Problems on Shaft subjected to only Shear based on Rigidity and Strength 1. Problems on Shaft subjected to only Shear based on Rigidity and Strength 1. Problems on Shaft subjected to combined Shear and Bending 2. Practice on Section of Solids-a) Priciples on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 1. Practice on Section of Solids-a) Priciples on Shaft subjected to combined Shear and Bending 1. Practice on Section of Solids-a) Priciples on Shaft subjected to combined Shear and Bending 2. Practice on Section of Solids-a) Priciples on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 4. Problems on Shaft subjected to combined Shear a					1	
Maintenance-Cost-Quantity Legal issues and Patents Aesthetic and Ergonomic factors Choice of Materials Feasibility of Manufacturing Processes Aesthetic and Ergonomic considerations Explain Aesthetic considerations Basic types of product forms, Designing for appearance, shape, Design features, Materials, Finishes, proportions, Symmetry Contrast etc. Morgan's color code. Ergonomic considerations. Relation between man, machine and environmental factors. Design of displays and controls. Torsion of Shaft: Laksumptions in Shear stress in a shaft subjected to tonly Shear based on Rigidity and Strength and Rigidity (Solid and Hollow shaft) Leyower Transmitted by Solid and Hollow shaft) Code for power Transmitseion and Hollow shaft) Leyower Transmitsed by Solid and Hollow shaft only Shear based on Rigidity and Strength and Strength and Rigidity and Strength and Strength and Strength and Rigidity and Strength and Strength and Rigidity and Strength and Rigid				Standardization		
Part				1		
Legal issues and Patents Aesthetic and Ergonomic factors						
Aesthetic and Ergonomic factors Choice of Materials Feasibility of Manufacturing Processes Aesthetic and Ergonomic consideration in Design: Explain Aesthetic considerations- Basic types of product forms, Designing for appearance, shape, Designing for appearance, shape, Designing for appearance, shape, Designing for appearance, shape, Design features, Materials, Finishes, proportions, Symmetry Contrast etc. Morgan's color code. Ergonomic considerations- Relation between man, machine and environmental factors. Design of displays and controls. Torsion of Shaft: 1.Assumptions in Shear stress in a shaft subjected to toonly Shear hased on Rigidity (Solid and Hollow shaft) 2.Power Transmitted by Solid and Hollow shaft. ASME and BIS Code for power Transmission 3.Problems on Shafts subjected to only Shear based on Rigidity and Strength 1.Problems on Shafts subjected to only Shear based on Rigidity and Strength 2.Problems on Shaft subjected to only Bending 3.Problems on Shaft subjected to only Bending 3.Problems on Shaft subjected to combined Shear and Bending 2.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on				1 -		
Choice of Materials Choice of Materials				_		
4 02 03,04 Problems on Shafts subjected to only Shear based on Rigidity and Strength 1						
Aesthetic and Ergonomic consideration in Design: Explain Aesthetic considerations Basic types of product forms, Designing for appearance, shape, Design features, Materials, Finishes, proportions, Symmetry Contrast etc. Morgan's color code. Ergonomic considerations- Relation between man, machine and environmental factors. Design of displays and controls. Torsion of Shaft: 1.Assumptions in Shear stress in a shaft subjected to torsion - Strength and Rigidity (Solid and Hollow shaft) 2.Power Transmitted by Solid and Hollow shaft - SME and BIS Code for power Transmission 3.Problems on Shafts subjected to only Shear based on Rigidity and Strength 1.Problems on Shaft subjected to only Shear based on Rigidity and Strength 1.Problems on Shaft subjected to only Shear based on Rigidity and Strength 2.Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to solve the strength of Solida-3. Problems on Shaft subjected to						
Aesthetic and Ergonomic consideration in Design: Explain Aesthetic considerations- Basic types of product forms, Designing for appearance, shape, Design features, Materials, Pergonomic considerations, Designing for appearance, shape, Design features, Materials, Problems on Shaft subjected to Strength and Rigidity Strength and Rigidity Design for appearance, shape, Design features, Materials, Design for appearance, and Aesthetic design principles. Case Table 1 1. Validate the Problems on Shaft s				Feasibility of		
consideration in Design: Explain Aesthetic considerations- Basic types of product forms, Designing for appearance, shape, Design features, Materials, Finishes, proportions, Symmetry Contrast etc. Morgan's color code. Ergonomic considerations- Relation between man, machine and environmental factors. Design of displays and controls. Torsion of Shaft: 1. Assumptions in Shear stress in a shaft subjected to torsion—Strength and Rigidity (Solid and Hollow shaft). ASME and BIS Code for power Transmisted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3. Problems on Shafts subjected to only Shear based on Rigidity and Strength 1. Problems on Shaft subjected to only Shear based on Rigidity and Strength 2. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending. 2. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to shaft subjected to 3. Problems on Shaft subjected to 3. Problems on Shaft subjected to 3. Problems on Shaft				Manufacturing Processes		
Sections on Simple Explain Aesthetic considerations Design features, Materials, Posign features, Materials, Finishes, proportions, Symmetry Contrast etc. Morgan's color code. Ergonomic considerations Relation between man, machine and environmental factors. Design of displays and controls. Torsion of Shaft: LAssumptions in Shear stress in a shaft subjected to torsion Strength and Rigidity (Solid and Hollow shaft) Subjected to only Shear based on Rigidity and Strength 1. Problems on Shafts subjected to only Shear based on Rigidity and Strength 1. Problems on Shaft subjected to only Shear based on Rigidity and Strength 1. Problems on Shaft subjected to only Shear based on Rigidity and Strength 1. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending 2. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear						
considerations- Basic types of product forms, Designing for appearance, shape, Design features, Materials, Finishes, proportions, Symmetry Contrast etc. Morgan's color code. Ergonomic considerations- Relation between man, machine and environmental factors. Design of displays and controls. Torsion of Shaft: 1. Assumptions in Shear stress in a shaft subjected to torsion – Strength and Rigidity (Solid and Hollow shaft) 2. Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3. Problems on Shafts subjected to only Shear based on Rigidity and Strength 1. Problems on Shafts subjected to only Shear based on Rigidity and Strength 2. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending 2. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 4. Problems on Shaft subjected to combined Shear and Bending 4. Problems on Shaft subjected to combined Shear and Bending 4. Problems on Shaft subjected to combined Shear and Bending 4. Problems on Shaft subjected to combined Shear and Bendin				_		
Basic types of product forms, Designing for appearance, shape, Designing for appearance, shape, Designing for appearance, shape, Designing for appearance, shape, Design features, Materials, Finishes, proportions, Symmetry Contrast etc. • Morgan's color code. • Ergonomic considerations-Relation between man, machine and environmental factors. Design of Shaft: 1. Assumptions in Shear stress in a shaft subjected to torsion—Strength and Rigidity (Solid and Hollow shaft). 2. Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3. Problems on Shafts subjected to only Shear based on Rigidity and Strength 1. Validate the Problems on Shafts for Strength and Rigidity (Solid and Hollow shaft). Assumption on Shafts subjected to only Shear based on Rigidity and Strength 1. Problems on Shafts subjected to only Shear based on Rigidity and Strength. 2. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending. 2. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and				-		
Designing for appearance, shape, Design features, Materials, Finishes, proportions, Symmetry Contrast etc. Morgan's color code. Ergonomic considerations- Relation between man, machine and environmental factors. Design of displays and controls. Torsion of Shaft: 1. Assumptions in Shear stress in a shaft subjected to torsion—Strength and Rigidity (Solid and Hollow shaft) 2. Power Transmitted by Solid and Hollow shaft) 2. Power Transmisted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3.Problems on Shafts subjected to only Shear based on Rigidity and Strength 1. Validate the Problems on Shafts or Strength and Rigidity using Ansys (One each on Strength and Rigidity) 1. Problems on Shafts subjected to only Shear based on Rigidity and Strength 2. Problems on Shaft subjected to only Shear based on Rigidity and Strength 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending 2. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 4. Page Table 1.						
Design features, Materials, Finishes, proportions, Symmetry Contrast etc. Morgan's color code. Ergonomic considerations- Relation between man, machine and environmental factors. Design of displays and controls. Torsion of Shaft: 1. Assumptions in Shear stress in a shaft subjected to torsion - Strength and Rigidity (Solid and Hollow shaft) 2. Power Transmitted by Solid and Hollow shaft) 2. Power Transmission 3. Problems on Shafts subjected to only Shear based on Rigidity and Strength 1. Recap of CAD commands The Table 1 of Solids- a) Problems on Shaft subjected to only Shear based on Rigidity and Strength 1. Recap of CAD commands 2. Practice on Section of Solids- a) Prisms b) Pyramid 1. Practice on Section of Solids- a) Prisms b) Pyramid 1. Practice on Section of Solids- a) Prisms b) Pyramid 1. Practice on Section of Solids- a) Problems on Shaft subjected to combined Shear and Bending. 2. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft						0 0 1
Aesthetic design principles. Pillsites, proportions, symmetry Contrast etc. Morgan's color code. Ergonomic considerations- Relation between man, machine and environmental factors. Design of displays and controls. Torsion of Shaft: 1.Assumptions in Shear stress in a shaft subjected to torsion – Strength and Rigidity (Solid and Hollow shaft). 2.Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3.Problems on Shafts subjected to only Shear based on Rigidity and Strength 1.Problems on Shafts subjected to only Shear based on Rigidity and Strength 2.Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 1. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 1. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending 3				Design features, Materials,		_
Contrast etc. Morgan's color code. Ergonomic considerations- Relation between man, machine and environmental factors. Design of displays and controls. Torsion of Shaft: 1. Assumptions in Shear stress in a shaft subjected to torsion – Strength and Rigidity (Solid and Hollow shaft) 2. Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3. Problems on Shafts subjected to only Shear based on Rigidity and Strength 1. Problems on Shafts subjected to only Shear based on Rigidity and Strength 2. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending 2. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 4. Page Table 1 5. Validate the Problems on Shafts subjected to combined Shear and Bending 5. Problems on Shaft subjected to combined Shear and Bending 6. Problems on Sha	3	01	01		Ref Table 1	
Porgan's color code. Propomic considerations- Relation between man, machine and environmental factors. Design of displays and controls. Torsion of Shaft: 1.Assumptions in Shear stress in a shaft subjected to torsion – Strength and Rigidity (Solid and Hollow shaft) 2.Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3.Problems on Shafts subjected to only Shear based on Rigidity and Strength 1.Problems on Shafts subjected to only Shear based on Rigidity and Strength 2.Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending. 2.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending						S
considerations- Relation between man, machine and environmental factors. Design of displays and controls. Torsion of Shaft: 1.Assumptions in Shear stress in a shaft subjected to torsion – Strength and Rigidity (Solid and Hollow shaft) 2.Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3.Problems on Shafts subjected to only Shear based on Rigidity and Strength 1.Problems on Shafts subjected to only Shear based on Rigidity and Strength 2.Problems on Shaft subjected to only Shear based on Rigidity and Strength 2.Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending. 2.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Sh				_		
Relation between man, machine and environmental factors. Design of displays and controls. Torsion of Shaft: 1. Assumptions in Shear stress in a shaft subjected to torsion – Strength and Rigidity (Solid and Hollow shaft) 2. Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3. Problems on Shafts subjected to only Shear based on Rigidity and Strength 1. Ref Table 1 1. Validate the Problems on Shafts for Strength and Rigidity using Ansys (One each on Strength and Rigidity) 1. Recap of CAD commands 1. Recap of CAD commands 2. Problems on Shaft subjected to only Shear based on Rigidity and Strength 2. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending 2. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft sub						
and environmental factors. Design of displays and controls. Torsion of Shaft: 1. Assumptions in Shear stress in a shaft subjected to torsion – Strength and Rigidity (Solid and Hollow shaft) 2. Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3. Problems on Shafts subjected to only Shear based on Rigidity and Strength 1. Ref Table 1 1. Validate the Problems on Shafts for Strength and Rigidity using Ansys (One each on Strength and Rigidity) 1. Recap of CAD commands 1. Recap of CAD commands 1. Recap of CAD commands 2. Practice on Section of Solids-a) Prisms b) Pyramid 1. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending. 2. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear an						
Torsion of Shaft: 1. Assumptions in Shear stress in a shaft subjected to torsion – Strength and Rigidity (Solid and Hollow shaft) 2. Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3. Problems on Shafts subjected to only Shear based on Rigidity and Strength 1. Recap of CAD commands 1. Recap of CAD commands 1. Recap of CAD commands 2. Practice on Section of Solids-a) Prisms 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending. 2. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Sha						
1. Validate the Problems on Shafts of Strength and Rigidity (Solid and Hollow shaft) 2. Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3. Problems on Shafts subjected to only Shear based on Rigidity and Strength 1. Problems on Shafts subjected to only Shear based on Rigidity and Strength 2. Problems on Shafts subjected to only Shear based on Rigidity and Strength 2. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending. 2. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 4. Problems on Shaft subjected to combined Shear and Bending. 4. Problems on Shaft subjected to combined Shear and Bending. 5. Problems on Shaft subjected to combined Shear and Bending. 5. Problems on Shaft subjected to combined Shear and Bending. 5. Problems on Shaft subjected to combined Shear and Bending. 5. Problems on Shaft subjected to combined Shear and Bending. 5. Problems on Shaft subjected to combined Shear and Bending. 5. Problem						
shaft subjected to torsion – Strength and Rigidity (Solid and Hollow shaft) 2.Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3.Problems on Shafts subjected to only Shear based on Rigidity and Strength 1. Ref Table 1 1. Validate the Problems on Shafts for Strength and Rigidity using Ansys (One each on Strength and Rigidity) 1. Recap of CAD commands 2. Practice on Section of Solids- a) Prisms b) Pyramid 1. Practice on Section of Solids- a) Prisms b) Pyramid 1. Practice on Section of Solids- a) Prisms b) Pyramid 2. Practice on Section of Solids- a) Prisms b) Pyramid 3. Problems on Shaft subjected to combined Shear and Bending. 2. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft sub						
Strength and Rigidity (Solid and Hollow shaft) 2.Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3.Problems on Shafts subjected to only Shear based on Rigidity and Strength 1.Problems on Shafts subjected to only Shear based on Rigidity and Strength 2.Problems on Shafts subjected to only Shear based on Rigidity and Strength 2.Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending. 2.Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 4. Problems on Shaft subjected to combined Shear and Bending 4. Problems on Shaft subjected to combined Shear and Bending 4. Problems on Shaft subjected to combined Shear and Bending 4. Problems on Shaft subjected to combined Shear and Bending 4. Problems on Shaft subjected to combined Shear and Bending 5. Problems on Shaft subjected to combined Shear and Bending 6. Problems on Shaft subjected to combined Shear and Bending 6. Problems on Shaft subjected to shear and Bending 7. Problems on Shaft subjected to shear and Bending 8. Problems on Shaft subjected to shear and Bending 8. Problems on Shaft subjected to shear and Bending 8. Problems on Shaft subjected to shear and Bending 9. Problems on Shaft subjected to shear and Bending 9. Pro				_		
Hollow shaft) 2.Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3.Problems on Shafts subjected to only Shear based on Rigidity and Strength 1.Problems on Shafts subjected to only Shear based on Rigidity and Strength 2.Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending 2.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 4. Problems on Shaft subjected to combined Shear and Bending 4. Problems on Shaft subjected to shaft subjected to combined Shear and Bending 4. Problems on Shaft subjected to shaft s						
4 02 03,04 2.Power Transmitted by Solid and Hollow shaft - ASME and BIS Code for power Transmission 3.Problems on Shafts subjected to only Shear based on Rigidity and Strength 1.Problems on Shafts subjected to only Shear based on Rigidity and Strength 2.Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 2.Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending. 2.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Sh						
Hollow shaft - ASME and BIS Code for power Transmission 3.Problems on Shafts subjected to only Shear based on Rigidity and Strength 1.Problems on Shafts subjected to only Shear based on Rigidity and Strength 2.Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to combined Shear and Bending 2.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 4. Practice on Section of Solids-a)Cylinder b) Cone Springs: 1. Classification of springs- 4. CAD	4	02	03,04		D (T 11 4	-
3.Problems on Shafts subjected to only Shear based on Rigidity and Strength 1. Recap of CAD commands 1. Problems on Shafts subjected to only Shear based on Rigidity and Strength 2. Practice on Section of Solids-a) Prisms 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 4. Problems on Shaft subjected to only Bending 5. Problems on Shaft subjected to combined Shear and Bending. 2. Practice on Section of Solids-a) Prisms b) Pyramid 1. Practice on Section of Solids-a) Prisms b) Pyramid 7. O2 03 03 04 Springs: 1. Classification of springs- 7. O2 03 03 04 Ref Table 1 (CAD)				Hollow shaft - ASME and BIS	Ref Table 1	
5. Problems on Sharts subjected to only Shear based on Rigidity and Strength 1. Problems on Shafts subjected to only Shear based on Rigidity and Strength 2. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 4. Problems on Shaft subjected to only Bending 5. Problems on Shaft subjected to combined Shear and Bending 6. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to shaft subjected to shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to						
Strength 1. Problems on Shafts subjected to only Shear based on Rigidity and Strength 2. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 4. Problems on Shaft subjected to only Bending 5. Problems on Shaft subjected to combined Shear and Bending 6. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Simple Machine Elements						
1. Recap of CAD commands 1. Recap of CAD commands 2. Practice on Section of Solids-a) Prisms 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 4. Problems on Shaft subjected to only Bending 5. Problems on Shaft subjected to combined Shear and Bending. 2. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 5. Problems on Shaft subjected to combined Shear and Bending 6. Problems on Shaft subjected to combined Shear and Bending 6. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 7. Problems on Shaft subjected to combined Shear and Bending 8. Problems on Shaft subjected to combined Shear and Bending 9. Problems on Shaft subjected to combined Shear and Bending 9. Problems on Shaft subjected to combined Shear and Bending 9. Problems on Shaft subjected to combined Shear and Bending 9. Problems on Shaft subjected to combined Shear and Bending 9. Problems on Shaft subjected to combined Shear and Bending 9. Problems on Shaft subjected to combined Shear and Bending 9. Problems on Shaft subjected to combined Shear and Bending 9. Problems on Shaft subjected to combined Shear and Bending 9. Problems on Shaft subjected to combined Shear and Bending 9. Problems on Shaft subjected to combined Shear and Bending 9. Problems on Shaft subjected to combined Shear and Bending 9. Problems on Shaft subjected to combined Shear and Bending 9. Problems on Shaft subjected to combined Shear and Bending 9. Problems on Shaft subjected to combined Shear and Bending 9. Problems on Shaft subjected to combined Shear and Bending Shear and Bending Shear and Bending Sh						
1.Problems on Shafts subjected to only Shear based on Rigidity and Strength 2.Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 4. Problems on Shaft subjected to only Bending 5. Problems on Shaft subjected to combined Shear and Bending 6. O2 O3,04 Combined Shear and Bending 7. O2 O3 O3 O4 Springs: 7. O2 O3 O3 O4 Springs: 7. O2 O3 O3 O4 (CAD) 7. Problems on Shaft subjected to combined Shear and Bending 7. O2 O3 O3 O4 (CAD) 7. O2 O3 O3 O4 (CAD) 7. O2 O3 O4 (CAD)						1. Recap of CAD
Strength 2.Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 4. Problems on Shaft subjected to combined Shear and Bending. 2.Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 4. Practice on Section of Solids-a)Cylinder b) Cone Springs: 1. Classification of springs- 4. Classification of springs- 4. Classification of springs- 5. Conduction of Solids-a)Cylinder b) Cone Sections on Simple Machine Elements (CAD)				1.Problems on Shafts subjected to		
2.Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 1 Problems on Shaft subjected to combined Shear and Bending. 2.Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending. 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending Springs: 1. Classification of springs- Ref Table 1 Sections on Simple Machine Elements (CAD)						
2.Problems on Shaft subjected to only Bending 3. Problems on Shaft subjected to only Bending 1 Problems on Shaft subjected to combined Shear and Bending. 2.Problems on Shaft subjected to combined Shear and Bending. 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending Springs: 1. Classification of springs- Ref Table 1 Sections on Simple Machine Elements (CAD)	5	0.0	00.04		D (m 11 4	
3. Problems on Shaft subjected to only Bending 1 Problems on Shaft subjected to combined Shear and Bending. 2. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending 3. Problems on Shaft subjected to combined Shear and Bending Springs: 1. Classification of springs- Ref Table 1 Sections on Simple Machine Elements (CAD)		02	03,04		Ref Table 1	
only Bending 1 Problems on Shaft subjected to combined Shear and Bending. 2.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending Springs: 1. Classification of springs- Ref Table 1 Sections on Simple Machine Elements (CAD)						-
1 Problems on Shaft subjected to combined Shear and Bending. 2.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending Springs: 1. Classification of springs- Ref Table 1 Sections on Simple Machine Elements (CAD)						b) i yrainia
combined Shear and Bending. 2.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending Springs: 1. Classification of springs- Ref Table 1 Sections on Simple Machine Elements (CAD)				, ,		
2.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending Springs: 1. Classification of springs- Ref Table 1 Sections on Simple Machine Elements (CAD)				-		
6 02 03,04 combined Shear and Bending 3.Problems on Shaft subjected to combined Shear and Bending Berlinder b) Cone Springs: 1. Classification of springs- Ref Table 1 of Solids-a)Cylinder b) Cone Sections on Simple Machine Elements (CAD)				9		1 Practice on Castier
3.Problems on Shaft subjected to combined Shear and Bending Springs: 1. Classification of springs- Per Table 1 Ref Table 1 (CAD)	6	02	03 04	-	Ref Table 1	
combined Shear and Bending b) Cone Springs: Classification of springs- Ref Table 1 CAD			00,01	9	101 Tubic 1	
7 02 03 03 04 1. Classification of springs- Ref Table 1 (CAD)				•		
7 02 03 03 04 1. Classification of springs- Ref Table 1 (CAD)						
7 02.03 03.04 1. Classification of springs-				Springs:		
	7	02.03	03 04	1. Classification of springs-	Ref Table 1	
Application of springs- Leaf	(02,03	00,01	Application of springs- Leaf	TO TUDIC I	
springs –Application view, Front view with				springs -Application		

			2.Terminology of Helical spring- Materials and Specification of springs 3. Design of helical spring		Right half in Section, Front view with Left half in Section b) Sectional Top View c) Sectional Side View
8	02,03	03,04	Design of helical spring	Ref Table 1	Sections on Simple Machine Elements (CAD) a) Sectional front view, Front view with Right half in Section, Front view with Left half in Section b) Sectional Top View c) Sectional Side View
9	02,03	03,04	Coupling: Design of Muff coupling	Ref Table 1	Using CAD, prepare Part Models for Muff coupling based on designed parameter and assemble the same. Extract the Sectional views for the above machine element indicating Surface Texture and Bill of Materials
10	02,03	03,04	Design of Protected type Flange Coupling	Ref Table 1	Using CAD, prepare Part Models for Protected type Flange Coupling based on designed parameter and assemble the same. Extract Sectional views for the above machine element indicating Surface Texture and Bill of Materials
11	02,03,	03,04,07	Design of Knuckle Joint		Using CAD, prepare Part Models for Knuckle Joint based on designed parameter and assemble the same. Extract Sectional views for the above machine element indicating Surface Texture and Bill of Materials
12	04	03,04,07	3D Printing 1. Introduction, Process, Classifications, Advantages of		

Total in hours			39	13	52
13	04	03,04,07	1. Working of Fused Deposition Modelling (FDM) Machine- Single and Multi Nozzle printers, Machine Configuration- Cartesian, Delta, Polar and robotic arm configuration 3D printers 2. Common FDM materials- PLA, ABS, PA, TPU,PETG, PEEK and PEI, Printer Parameters - Temperature of the nozzle and the platform, the build speed, the layer height, Warping, Layer Adhesion, Support Structure, In-fill & Shell Thickness 3. Benefits & Limitations of FDM, Software Tools- 3D modelling, Slicers & 3D Printer Hosts		Printing of Designed and Modelled component (flange coupling and knuckle joint) on any available 3D printing machine and carryout post processing of additively manufactured product (Inspection and defect analysis).
			additive over conventional Manufacturing, Applications, Modelling for Additive Manufacturing 2. Additive Manufacturing Techniques, 3D Printing Materials and its forms, Post Processing Requirement and Techniques. 3. Product Quality, Inspection and Testing, Defects and their causes, Additive Manufacturing Application Domains	Study the latest technological changes in this course and present the impact of these changes on industry	Preparation of 3D Printer for printing – Modelling, Saving CAD file into STL file, Slicing, Material loading and printing parameter selection

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Co-Ordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl.No.	Suggestive Activities for Tutorials
01	Presentation on design of Bicycles for Indian children focusing on Aesthetic and Ergonomics by Explaining market analysis- user study – Problem identification – Product design and specification- Concept generation- Material and Manufacturing Processes- Final concept selection www.sastechjournal.com
02	Presentation on types of suspension springs used in Automobile vehicles by explaining leaf- spring, Coil spring, Torsion Spring, Air bags, Rubber Springs www.theengineerspost.com
03	Presentation on different types of Keys used in Transmission system and importance such as parallel key, Saddle key, Sunk Key, Gib headed key, Feather Key, Woorruff Key with Advantages and applications
04	Presentation on Antifriction Bearing by explaining rolling contact- journal ball bearing construction- Cylindrical bearing – Needle bearing – Foot step Bearing – Plumber Bearing

05	Presentation on Friction Clutches used in Automobiles by explaining parts- Single plate- Multi plate- Purpose – Application
06	The Role of Additive Manufacturing in the Era of Industry 4.0
07	Application of Additive Manufacturing in health care industry

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion		
1.	CIE-1 Written Test	5	80	30	A		
2.	CIE-2 Written Test	9	80	30	Average of three tests		
3	CIE-3 Written Test	13	80	30	30		
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill test		
5	CIE-5 Skill Test-Practice	12	180	100	reduced to 20		
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics	1-13		10	10		
		60					
	Semester End Examination	n (Practice)	180	100	40		
	Total Marks 100						

5. Format for CIE written Test

Course Na	me	Production Development	Design	and	Test	I/II/III	Sem	IV
Course Coo	de	20ME43P			Duration	80 Min	Marks	30
Note: Ansv	<i>w</i> er a	ny one full question	from each sec	tion. Ea	ach full ques	tion carries 10 m	arks.	
Section		Assessr	nent Question	S		Cognitive Levels(R/U/A)	Course Outcome	Marks
T	1							
1	2							
11	3							
II	4							
III	5							
	6							

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

5. (a) For CIE Skill Test -4

SL. No.	CO	Particulars/Dimension	Marks
1	02	 One Question on Design of Shaft Subjected to Strength and Rigidity Fixing the Diameter of Shaft after design30 Marks Validate the Designed parameters of Shaft for Strength and Twisting using Ansys- 30 Marks 	60
2	03	One question on Section of Solids (Prism/Pyramid/Cone/Cylinder) • Placing the Section plane and drawing the section – 20 Marks • Extracting the True shape of the Section – 10 Marks	30
3	01,02,03	G I	10
Tota	Marks		100

Duration: 240 Min

5. (b)For CIE Skill Test-5

SL.	co	Particulars/Dimension	Marks
No.			
1	03,04	One Question on Design and Assembly drawing of Simple Machine parts like Muff Coupling/Flange Coupling/ Knuckle Joint • Design of Simple Machine part by using Data Hand Book35 Marks • Preparation of Part Models for the Designed values by using CAD Software 35 Marks • Assembly of Part Models using CAD software With Bill of Materials20 Marks	90
2	03,04	Portfolio evaluation based on the average of all Practice Sessions (7-12 Weeks)	10
Tota	l Marks		100

Duration: 240 Min

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students
No.							Score
		2	4	6	8	10	
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2
	Average Marks= (8+6+2+2)/4=4.5						5

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description		
1	A Text book of Machine Design R.S. Khurmi & J.K.Gupta S. Chand publication		
2	Machine design S G Kulkarni McGraw Hill Education Publications		
3	Introduction to Machine design V B Bhandari McGraw Hill Education Publications		
4	Design Of Machine Elements Vol I, Vol II J.B.K. Das , P.L.Srinivas Murthy Sapna Publication		
5	Machine Component Design William Orthwein Jaico publication		
6	Design Data Hand Book for Mechanical Engineers K Mahadevan & K Balaveera Reddy CBS publications		
7	Khanna Editorial, "3D Printing and Design", Khanna Publishing House, Delhi.		
8	J.D. Majumdar and I. Manna, "Laser-Assisted Fabrication of Materials", Springer Series in Material Science, 2013		
9	D.T. Pham and S.S. Dimov, "Rapid manufacturing: The technologies and applications of rapid prototyping and rapid tooling", London-New York, Springer, 2001		
10	Lan Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010		
11	Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Tooling, Rapid Manufacturing", Hanser Publisher, 2011.		
12	CK Chua, Kah Fai Leong, "3D Printing and Rapid Prototyping- Principles and Applications", World Scientific, 2017		

13	L. Lu, J. Fuh and Y.S. Wong, "Laser-Induced Materials and Processes for Rapid					
13	Prototyping", Kulwer Academic Press, 2001					
14	Zhiqiang Fan And Frank Liou, "Numerical Modelling of the Additive					
14	Manufacturing (AM) Processes of Titanium Alloy", InTech, 2012					

8. LIST SOFTWARES/WEBSITES

1. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Machine%20design1/left home.html

2 http://nptel.ac.in/courses/Webcoursecontents/IIT%20Kharagpur/Machine%20design1/left mod4. html

9. SEE Scheme of Evaluation

SL.	СО	Particulars/Dimension	Marks
No.			
1	02,03	One Question on Design and Assembly of Simple Machine parts like Muff coupling/Flange Coupling/ Knuckle Joint • Design of Simple Machine part by using Data Hand Book35 Marks • Preparation of Part Models for the Designed valves By using CAD Software —25 Marks • Assembly of Part Models By using CAD Software With Bill of Materials20 Marks	80
2	01,02,0 3,04	Viva voce	20
	Total Ma	arks	100

10. Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	Latest version of CAD software		20 user
02	Desk top computer	Latest configuration	20 no's
03	Laser printer		02 no's
04	3-D Printing Machine		01 no

Duration: 180 Min

Programme	Mechanical Engineering	Semester	IV
Course Code	20ME44P	Type of Course	Programme Core
Course Name	Elements of Industrial Automation	Contact Hours	8 hours/week 104 hours/semester
Teaching Scheme	L:T:P :: 3:1:4	Credits	6
CIE Marks	60	SEE Marks	40

1. Rationale: In present scenario, Manufacturing industries are moving towards complete automation. Small and medium industries are in a phase of switching to PLC and SCADA technology for data acquisition and control. Industrial automation systems are used to control and monitor a process, machine or device in a computerized manner that usually fulfils repetitive functions or tasks. They are intended to operate automatically in order to reduce and improve human work in the industry. Advantages of this technology is commonly attributed to higher production rates and increased productivity, more efficient use of materials, better product quality, improved safety, shorter workweeks for labour, and reduced factory lead times. The Automation Engineer will design, program, simulate and commission automated machines and plantwide processes to perform many job functions. Depending on the size of the organization, the engineer will perform some or all of these responsibilities. Therefore, it is necessary for diploma engineers to have knowledge of both PLC and SCADA technology. This course attempts to provide basic theoretical and practical aspects of automation technologies to develop operational competency. Hence this course is the foundation for diploma engineers who want to further specialise in the field of industrial automation

2. Course Outcomes: At the end of this course, student will be able to

CO-01	Select the right sensor and/or actuator for automating a given application and demonstrate process variables using sensors and/or transducers.
CO-02	Perform specified control functions using a Programmable Logic Controller (PLC) and list various applications of embedded systems.
CO-03	Design and test an automation system for a required operational specification and troubleshoot to resolve any given issue(s).
CO-04	Explain the concepts of SCADA, HMI and DCS and list their various applications

			Lecture	Lecture Tutorial		
Week CO		PO*	(Knowledge)	(Activity)	(Skill)	
	CO		3 hours/week	1 hour/week	4 hours/week (2 hours/batch twice in a week)	
1	01	01	Introduction:	Ref Table 1	Study the following appliances/ automation	

			1. Need and benefits of Industrial Automation, Automation Hierarchy, Basic components of automation system, description of each component 2. Automation technology as a part of engineering sciences, Key development milestones in the history of automation technology, Effects of automation on people. 3. Types of automation system:-Relay logic and PLC		systems and identify various elements used and their function 1. Air conditioning System 2. Automatic water level control 3. Elevator(for Three Floor) 4. Washing Machine Write the Block Diagram For each and explain with a Multimedia Presentation
2	01	01	Programmable logic controller: 1. Introduction, Compare Relay Logic Control and PLC Logic Control, Internal Architecture of PLC 2. I/O Modules (Interfaces), Memory organization. Input devices: • Mechanical Switches • Proximity Switches 3. Input devices: • Photo electric Sensors and Switches • Encoders • Temperature Sensors • Position/Displacement Sensors	Ref Table 1	Demonstrate the working of below shown Switches/Sensor. a. Various industrial Switches (Push Button, ON/OFF, Toggle, Emergency, Rotary Switches etc.) b. Proximity- Inductive, Capacitive and Optical Sensor c. Temperature Sensor d Float Sensors Note: Connect each sensor directly to the LED/Lamp with appropriate power supply
3	01	01	 1. Input devices: Strain Gauges Pressure Sensors Liquid level detectors 2. Input devices: Fluid flow measurement Smart Sensors 3. Output Devices: Relay Directional control Valve 	Ref Table 1	You tube presentation on Input and Output devices

4	01	01	ADC and DAC ADC and DAC Motors- DC motor, Synchronous motor, Servo motor, ADC and DAC	Ref Table1	Demonstrate the Forward and Reversal of Stepper, Servo and DC Motors with the help of Drivers. Note: Demonstrate the above without using any controllers
5	02	02	 PLC Programming: Programming standards, List Different PLC Programming, Ladder diagram, Standard IEC 1131-3 Symbols used for I/O Devices Ladder diagram for logic gates. AND,OR,NOT,NAND,NOR,XOR, XNOR 	Ref Table1	 Execute energized motor or bulb using Switches in series or Parallel Write ladder diagram to test digital logic gates and Execute/Simulate the same.
6	02	01	1. Writing Equivalent ladder diagram for Electric Switch, Belt drive, motor circuit Latching, Sequential O/P 2. Introduction to Timer functions. Applications of timing functions in process control On Delay Timer Function, Off-delay Timer Function	Ref Table 1	 There are 3 mixing devices on a processing line A,B ,C. After the process begin mixer-A is to start after 7 seconds elapse, next mixer-B is to start 3.6 second after A. Mixer-C is to start 5 seconds after B. All of then remain ON until a master enable switch is turned off. Develop PLC ladder diagram, timing diagram and simulate the same Write a Ladder Program to count the number of Items moving

			3. PLC counter functions, Applications of PLC counter function in process control		on a conveyor Belt and Execute/Simulate the same
7	03	02	1) Relay, Jumps and Subroutines 2) Develop Ladder Program for relay based motor control automation such that the motor reverses its direction when the limit switches are activated 3) Develop a PLC ladder diagram to construct an alarm system which operates as follows. - If one input is ON nothing happens If any two inputs are ON, a red light goes ON If any three inputs are ON, an alarm sirens sound If all are ON, the fire department is notified.	Ref Table 1	Execute the Ladder Program for relay based motor control automation such that the motor reverses its direction when the limit switches are activated and also Demonstrate by interfacing with PLC Simulate the PLC ladder diagram developed for an alarm system and also Demonstrate by interfacing with PLC
8	03	02	 1 & 2) Develop PLC program for the following application a) Traffic Light 3)Develop PLC program for the following application b) Water Level Indicator 	Ref Table 1	Execute a PLC program for the following applications i) Traffic light controlling ii) Water level controlling
9	03	02	2) Develop automatic door system using optical sensor and linear actuator 3) Develop Automatic Elevator control	Ref Table 1	 Execute automatic door system using optical sensor and linear actuator Design ladder diagram for an Automatic Elevator control Also, Test and simulate the ladder diagram designed to operate and control the

					Automatic Elevator control
10	03	02	1 & 2) Design ladder diagram for car parking. (Hint: car is to be detected and enter the parking space to a particular location if space is available. If there is no space, a lamp should indicate that parking is full) 3) Design ladder diagram for operating and controlling the Lift.	Ref Table 1	 Simulate a ladder diagram for car parking. Test and simulate a ladder diagram designed to operate and control the Lift
11	02	02,07	1) Embedded System- Block Diagram of Embedded System 2) Applications of Embedded System • Robotics Drones • Braking System • Air conditioning, Refrigerator • Engine control System, 3) Applications of Embedded System • Automatic Washing machine • Microwave Oven • Keyless entry in Automobiles.		You tube Presentation on Applications of Embedded System
12	04	01,07	1)Concepts on Distributed control System, 2) Concepts on HMI 3)Introductions to SCADA	Study the latest technologica l changes in this course and present	 Multi media Exposure to DCS system Demonstrate the HMI interface to control Light in AND/OR Logic
13	04	01,07	1)Typical SCADA block diagram, 2)Benefits of SCADA, 3) Applications of SCADA	the impact of these changes on industry	 Multi media Exposure to SCADA system OR Make case study visiting any nearby industry (Packaging/Milk Dairy/Processing) using HMI, SCADA/DCS systems.

Total in hours	39	13	52

- *PO= Program Outcome as listed and defined in year 1 curriculum
- Course Co-Ordinator must prepare PO CO mapping with strength (Low/Medium/High) before course planning

Table 1: Suggestive Activities for Tutorials: (The List is only shared as an Example and not inclusive of all possible activities of the course. Student and Faculty are encouraged to choose activities that are relevant to the topic and on the availability of such resources at their institution)

Sl.No.	Suggestive Activities for Tutorials
01	Write a PLC Ladder Program to Switching on/off the Lamp whether they are at the bottom or the top of the staircase.
02	The production line may be powered off accidentally or turned off for noon break. The program is to control the counter to retain the counted number and resume counting after the power is turned ON again. When the daily production reaches 500, the target completed indicator will be ON to remind the operator for keeping a record. Press the Clear button to clear the history records. The counter will start counting from 0 again. Write a PLC Ladder Program to perform this operation.
03	Write a PLC Ladder Program Providing lubricant for the gear box before the lathe spindle starts to run which aims to ensure that the oil pump motor starts first and the main motor starts subsequently.
04	Write a PLC Ladder Program such that Once the photoelectric sensor detects 10 products, the robotic arm will begin to pack up. When the action is completed, the robotic arm and the counter will be reset.
05	 Develop PLC Programming Examples on Industrial Automation according to the logic given below, A Saw, Fan and oil pump all go ON when a start button is pressed. If the saw has operated less than 20s, the oil pump should go off when the saw is turned off and the fan is to run for an additional 5s after the shutdown of the saw. If the saw has operated for more than 20s, the fan should remain on until reset by a separate fan reset button and the oil pump should remain on for an additional 10 s after the saw is turned off.
06	Develop and Simulate a PLC Ladder Diagram for Bottle Filling Plant
07	Study and present a Report on home Automation
08	Study and present a Report on Embedded systems in Automation
09	Study and present a Report on Automation in Processing Industries

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	Average of three
2.	CIE-2 Written Test	9	80	30	tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 Skill Test-Practice	6	180	100	Average of two skill
5	CIE-5 Skill Test-Practice	12	180	100	test reduced to 20

	Semester Life Examination	i (i ractice)		Total Marks	100
	Semester End Examination	180	100	40	
	·	Tot	al CIE Marks	60	
6	CIE-6 Portfolio continuous evaluation of Tutorial sessions through Rubrics 1-13			10	10

5. Format for CIE written Test

Course Name		Elements of Automation	Test	I/II/III	Sem	IV
Course Coo	le	20ME44P	Duration	80 Min	Marks	30
Note: Ansv	ver a	any one full question from each section. Ea	ich full ques	tion carries 10 m	arks.	
Section		Assessment Questions		Cognitive Levels(R/U/A)	Course Outcome	Marks
T	1					
1	2					
11	3					
II	4					
III	5		·			
	6					

Note for the Course coordinator: Each question may have one, two or three subdivisions. Optional questions in each section carry the same weightage of marks, Cognitive level and course outcomes.

Duration: 240 Min

Duration: 240 Min

5.(a)For CIE Skill Test -4

SL. No.	СО	Particulars/Dimension	
1	02	Select a suitable Sensor / Switch for a given Process Variable and activate • Selection of Sensor/Transducer – 05Marks • Activation and Result – 15 Marks	20
2	02	Select a suitable motor for the given case and energize • Selection of the Motor – 10 Marks • Energize and Result – 20 Marks	30
3	03	Develop and Simulate a simple ladder diagram for a given Case • Writing Ladder Program – 20 Marks • Simulate and Troubleshoot - 20 Marks	40
4	01,02,03	Portfolio evaluation based on the average of all Practice Sessions (1 -6 Weeks)	10
Tota	l Marks		100

5. (b) For CIE Skill Test -5

SL.	CO	Particulars/Dimension	Marks	
No.				
1	03	Device and Simulate a ladder diagram for the given Case Study (PLC Based)		
		 Writing Ladder Program – 40 Marks Simulate and Troubleshoot - 20 Marks 		
2	04	Prepare a SCADA Block Diagram for the given Case	30	
3	03,04	Portfolio evaluation based on the average of all Practice Sessions (7-12 Weeks)	10	
Tota	l Marks		100	

6. Rubrics for Assessment of Activity (Qualitative Assessment)

Sl.	Dimension	Beginner	Intermediate	Good	Advanced	Expert	Students	
No.							Score	
		2	4	6	8	10		
1		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	8	
2		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	6	
3		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2	
4		Descriptor	Descriptor	Descriptor	Descriptor	Descriptor	2	
	Average Marks= (8+6+2+2)/4=4.5							

Note: Dimension and Descriptor shall be defined by the respective course coordinator as per the activities

7. Reference:

Sl. No.	Description
1	Programmable logic Controllers By W. BOLTON
2	Digital electronics By FLYOD
3	Exploring PLC with applications By PRADEEP KUMAR SRIVATSAVA
4	Automation , Production systems and Computer integrated Manufacturing By MIKELL GROOVER
5	Sensors Hand book-SABRIE SOLOMAN-MC-GRAW HILL publications
6	Hand book of Modern Sensors" Physics ,Designs and Applications- JACOB FRADEN-Springer Publications
7	Electric Motors and Drives BY AUSTIN HUGHES and BILL DRURY

8. LIST OF SOFTWARE/LEARNING WEBSITES

1.http://www.vlab.com

2. http://www.mtabindia.com

3. http://www.nptel.ac.in

9. SEE Scheme of Evaluation

SL.		Particulars/Dimension	Marks
No.	CO	·	
1	02	Select a suitable Sensor / Switch for a given Process Variable and activate • Selection of Sensor/Transducer – 10 Marks • Activation and Result –20Marks OR Select a suitable motor for the given case and energize • Selection of the Motor – 10 Marks • Energize and Result – 20 Marks	30
3	03	Device and Simulate a ladder diagram for the given Case Study • Writing Ladder Program –30 Marks • Simulate and Troubleshoot –20 Marks	50
4	01,02, 03,04	Viva voce	20
	Total N	Marks	100

10. Equipment/software list with Specification for a batch of 20 students

Sl. No.	Particulars	Specification	Quantity
01	PLC Trainer Kit with the following Modules		05 No

Duration: 180 Min

	Door Controller		
	Car Parking Application		
	Water Level Controller		
	Conveyor Controller Application		
	Lift control Application		
	With different Length Patch Cords		
	Switches		
	 Mechanical Switches 		
02	 Proximity Switches 		05 No each
	 Photo electric Sensors and Switches 		
	Sensors		
	 Temperature Sensors 		
	 Position/Displacement Sensors 		
	Strain Gauges		
03	 Pressure Sensors 		05 No each
	Liquid level detectors		
	Fluid flow measurement		
	Smart Sensors		
	 Proximity Sensors 		
04	Induction Motor with DOL Starter	3 Phase Ac 50 Hz	01
05	Synchronise Motor with DOL Starter	3 Phase Ac 50 Hz	01
06	Stepper Motor	Standard size	01
07	Relays	Standard size	10
08	Counter and Timers	Standard size	10

Government of Karnataka Department of Collegiate and Technical Education

Programme	Audit Course	Semester	IV
Course Code	20ME45T	Type of Course	Audit
Course Name	Indian Constitution	Contact Hours	2 hours/week 26 hours/semester
Teaching Scheme	L:T:P :: 2:0:0	Credits	2
CIE Marks	50	SEE Marks	Nil

1. Course Outcomes: At the end of the Course, the student will be able to:

CO-01	CO1	Understand Preamble, salient features and importance of Indian Constitution.
CO-02	CO2	Understand Fundamental rights, duties and Directive principles of state policy.
CO 02		Understand Parliamentary system of governance, Structure, Functions, Power of
CO-03	CO3	Central, state governments (Legislative, Executive) and Judiciary.
CO-04 CO4		Understand Panchayat Raj Institutions and Local self-governments, UPSC, KPSC,
LU-04		NHRC, Status of women, RTE etc.

Week	СО	Detailed Course Content		
1	1	Introduction to constitution of India-Formation and Composition of the Constituent Assembly-Salient features of the Constitution-Preamble to the Indian Constitution	2	
2	1,2	Fundamental Rights- Definition, The right to equality, The right to freedom, The right against exploitation, The right to freedom of religion.	2	
3	1,2	Cultural and educational rights and The right to constitutional remedies. Fundamental Duties, Directive principles of state policy.	2	
4	1,3	Parliamentary system of governance- Structure of Parliament- Lok Sabha and Rajya Sabha. Functions of parliament- Legislative, Executive, Financial Function Powers of Lok Sabha and Rajya Sabha.	2	
5	1,3	Procedure followed in parliament in making law, Annual financial statement (Budget) – procedure in parliament with respect to estimates, Appropriation bill, Supplementary, additional grants, Vote on account, votes on credit and exception grant, special provisions, rules of procedure.	2	
6	1,3	Structure of union executive, Power and position of President. Vice President, Prime minister and council of ministers.	2	
7	1,3	Structure of the judiciary: Jurisdiction and functions of Supreme Court, high court, and subordinate courts.	2	
8	1,3	Federalism in the Indian constitution- Division of Powers: Union list, State list and concurrent list. Structure of state legislation, Legislative assembly and Legislative council.	2	
9	1,3	Functions of state legislature, Structure of state executive-Powers and positions of Governor, Speaker, Deputy Speaker, Chief Minister and council of minister.	2	
10	4	Local self-government- meaning-Three tier system, Village Panchayat-Taluk panchayat Zilla panchayat, Local bodies-Municipalities and Corporations, Bruhath Mahanagara Palike, Functions of Election commission, UPSC, KPSC.	2	

Total in Hours				
13	1,4	National Human Rights Commission Constitution- Powers and function of the Commission-Employee rights- Provisions made, Contractual-Non contractual employee rights-Whistle blowing-definition-Aspects-Intellectual Property Rights (IPR)–Meaning-Need for protection- Briefly description of concept of patents, Copy right, Trademark	2	
12	4	Status of Women in India - Women in rural areas, Constitutional Safeguards - Dowry Prohibition act 1961- Domestic violence act 2005- Sexual harassment at work place bill 2006. Human Rights of Children- Who is a child- list the Rights of the Child- Right to education, Protection of Children from Sexual Offences Act (POCSO)-2012-	2	
11	4	Amendment of the constitution, Human Rights-Definition-constitutional provisions-right to life and liberty-Human Rights of Women-Discrimination against women steps that are to be taken to eliminate discrimination against women in Education, employment, health care, Economic and social life,	2	

REFERENCES

- Introduction to the Constitution of India- Dr. Durga Das Basu
 Empowerment of rural women in India-Hemalatha H.M and Rameshwari Varma, Hema Prakashana.

4. CIE and SEE Assessment Methodologies

Sl. No	Assessment	Test Week	Duration In minutes	Max marks	Conversion
1.	CIE-1 Written Test	5	80	30	Average of three
2.	CIE-2 Written Test	9	80	30	tests
3	CIE-3 Written Test	13	80	30	30
4.	CIE-4 MCQ	6	60	20	Average of two
5	CIE-5 Open Book Test	12	60	20	CIE = 20
Tota	l CIE Marks	50			
Seme	ester End Examination (Pract	-			
Tota	l Marks		•	•	50